Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
The main goal of the NA62 experiment at CERN is to measure the branching ratio of the ultra-rare K+ →π+ vv decay with 10% accuracy. NA62 will use a 750 MHz high-energy un-separated charged hadron beam, with kaons corresponding to ~ 6% of the beam, and a kaon decay-in-flight technique. The positive identification of kaons is performed with a differential Cherenkov detector (CEDAR), filled with Nitrogen gas and placed in the incoming beam. To stand the kaon rate (45 MHz average) and meet the performances required in NA62, the Cherenkov detector has been upgraded (KTAG) with new photon detectors, readout, mechanics and cooling systems. The KTAG provides a fast identification of kaons with an efficiency of at least 95% and precise time information with a resolution below 100 ps. A half-equipped KTAG detector has been commissioned during a technical run at CERN in 2012, while the fully equipped detector, its readout and front-end have been commissioned during a pilot run at CERN in October 2014. The measured time resolution and efficiency are within the required performances.
The main goal of the NA62 experiment at CERN is to measure the branching ratio of the ultra-rare K+ →π+ vv decay with 10% accuracy. NA62 will use a 750 MHz high-energy un-separated charged hadron beam, with kaons corresponding to ~ 6% of the beam, and a kaon decay-in-flight technique. The positive identification of kaons is performed with a differential Cherenkov detector (CEDAR), filled with Nitrogen gas and placed in the incoming beam. To stand the kaon rate (45 MHz average) and meet the performances required in NA62, the Cherenkov detector has been upgraded (KTAG) with new photon detectors, readout, mechanics and cooling systems. The KTAG provides a fast identification of kaons with an efficiency of at least 95% and precise time information with a resolution below 100 ps. A half-equipped KTAG detector has been commissioned during a technical run at CERN in 2012, while the fully equipped detector, its readout and front-end have been commissioned during a pilot run at CERN in October 2014. The measured time resolution and efficiency are within the required performances.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1209965
Citazioni
ND
0
ND
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. L’Università di Modena e Reggio Emilia non si assume alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione.