Most of the photochemical activity of bacterial photosynthetic apparatuses occurs in the reaction center, a transmembrane protein complex which converts photons into charge-separated states across the membrane with a quantum yield close to unity, fuelling the metabolism of the organism. Integrating the reaction center from the bacterium Rhodobacter sphaeroides onto electroactive surfaces, it is possible to technologically exploit the efficiency of this natural machinery to generate a photovoltage upon Near Infra-Red illumination, which can be used in electronic architectures working in the electrolytic environment such as electrolyte-gated organic transistors and bio-photonic power cells. Here, photovoltage generation in reaction center-based bio-hybrid architectures is investigated by means of chronopotentiometry, isolating the contribution of the functionalisation layers and defining novel surface functionalization strategies for photovoltage tuning.

Photovoltage generation in enzymatic bio-hybrid architectures / Di Lauro, M.; Buscemi, G.; Bianchi, M.; de Salvo, A.; Berto, M.; Carli, S.; Farinola, G. M.; Fadiga, L.; Biscarini, F.; Trotta, M.. - In: MRS ADVANCES. - ISSN 2059-8521. - 5:18-19(2020), pp. 985-990. [10.1557/adv.2019.491]

Photovoltage generation in enzymatic bio-hybrid architectures

Di Lauro M.;Bianchi M.;Berto M.;Biscarini F.;
2020

Abstract

Most of the photochemical activity of bacterial photosynthetic apparatuses occurs in the reaction center, a transmembrane protein complex which converts photons into charge-separated states across the membrane with a quantum yield close to unity, fuelling the metabolism of the organism. Integrating the reaction center from the bacterium Rhodobacter sphaeroides onto electroactive surfaces, it is possible to technologically exploit the efficiency of this natural machinery to generate a photovoltage upon Near Infra-Red illumination, which can be used in electronic architectures working in the electrolytic environment such as electrolyte-gated organic transistors and bio-photonic power cells. Here, photovoltage generation in reaction center-based bio-hybrid architectures is investigated by means of chronopotentiometry, isolating the contribution of the functionalisation layers and defining novel surface functionalization strategies for photovoltage tuning.
2020
5
18-19
985
990
Photovoltage generation in enzymatic bio-hybrid architectures / Di Lauro, M.; Buscemi, G.; Bianchi, M.; de Salvo, A.; Berto, M.; Carli, S.; Farinola, G. M.; Fadiga, L.; Biscarini, F.; Trotta, M.. - In: MRS ADVANCES. - ISSN 2059-8521. - 5:18-19(2020), pp. 985-990. [10.1557/adv.2019.491]
Di Lauro, M.; Buscemi, G.; Bianchi, M.; de Salvo, A.; Berto, M.; Carli, S.; Farinola, G. M.; Fadiga, L.; Biscarini, F.; Trotta, M.
File in questo prodotto:
File Dimensione Formato  
Di Lauro_MRS Advances_2020.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 1.6 MB
Formato Adobe PDF
1.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1209659
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact