LONP1 is a nuclear-encoded mitochondrial protease crucial for organelle homeostasis; mutations ofLONP1have been associated with Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies (CODAS) syndrome. To clarify the role of LONP1 in vivo, we generated a mouse model in whichLonp1was ablated. The homozygousLonp(-/-)mouse was not vital, while the heterozygousLonp1(wt/-)showed similar growth rate, weight, length, life-span and histologic features as wild type. Conversely, ultrastructural analysis of heterozygous enterocytes evidenced profound morphological alterations of mitochondria, which appeared increased in number, swollen and larger, with a lower complexity. Embryonic fibroblasts (MEFs) fromLonp1(wt/-)mice showed a reduced expression ofLonp1andTfam, whose expression is regulated by LONP1. Mitochondrial DNA was also reduced, and mitochondria were swollen and larger, albeit at a lesser extent than enterocytes, with a perinuclear distribution. From the functional point of view, mitochondria from heterozygous MEF showed a lower oxygen consumption rate in basal conditions, either in the presence of glucose or galactose, and a reduced expression of mitochondrial complexes than wild type. In conclusion, the presence of one functional copy of theLonp1gene leads to impairment of mitochondrial ultrastructure and functions in vivo.

Impaired Mitochondrial Morphology and Functionality in Lonp1wt/- Mice / De Gaetano, Anna; Gibellini, Lara; Bianchini, Elena; Borella, Rebecca; De Biasi, Sara; Nasi, Milena; Boraldi, Federica; Cossarizza, Andrea; Pinti, Marcello. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 9:6(2020), pp. 1-21. [10.3390/jcm9061783]

Impaired Mitochondrial Morphology and Functionality in Lonp1wt/- Mice

De Gaetano, Anna;Gibellini, Lara;Bianchini, Elena;Borella, Rebecca;De Biasi, Sara;Nasi, Milena;Boraldi, Federica;Cossarizza, Andrea;Pinti, Marcello
2020

Abstract

LONP1 is a nuclear-encoded mitochondrial protease crucial for organelle homeostasis; mutations ofLONP1have been associated with Cerebral, Ocular, Dental, Auricular, and Skeletal anomalies (CODAS) syndrome. To clarify the role of LONP1 in vivo, we generated a mouse model in whichLonp1was ablated. The homozygousLonp(-/-)mouse was not vital, while the heterozygousLonp1(wt/-)showed similar growth rate, weight, length, life-span and histologic features as wild type. Conversely, ultrastructural analysis of heterozygous enterocytes evidenced profound morphological alterations of mitochondria, which appeared increased in number, swollen and larger, with a lower complexity. Embryonic fibroblasts (MEFs) fromLonp1(wt/-)mice showed a reduced expression ofLonp1andTfam, whose expression is regulated by LONP1. Mitochondrial DNA was also reduced, and mitochondria were swollen and larger, albeit at a lesser extent than enterocytes, with a perinuclear distribution. From the functional point of view, mitochondria from heterozygous MEF showed a lower oxygen consumption rate in basal conditions, either in the presence of glucose or galactose, and a reduced expression of mitochondrial complexes than wild type. In conclusion, the presence of one functional copy of theLonp1gene leads to impairment of mitochondrial ultrastructure and functions in vivo.
2020
8-giu-2020
9
6
1
21
Impaired Mitochondrial Morphology and Functionality in Lonp1wt/- Mice / De Gaetano, Anna; Gibellini, Lara; Bianchini, Elena; Borella, Rebecca; De Biasi, Sara; Nasi, Milena; Boraldi, Federica; Cossarizza, Andrea; Pinti, Marcello. - In: JOURNAL OF CLINICAL MEDICINE. - ISSN 2077-0383. - 9:6(2020), pp. 1-21. [10.3390/jcm9061783]
De Gaetano, Anna; Gibellini, Lara; Bianchini, Elena; Borella, Rebecca; De Biasi, Sara; Nasi, Milena; Boraldi, Federica; Cossarizza, Andrea; Pinti, Mar...espandi
File in questo prodotto:
File Dimensione Formato  
jcm-09-01783 (2).pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 7.62 MB
Formato Adobe PDF
7.62 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1208588
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact