Gonadotrophins exert their functions by binding follicle-stimulating hormone receptor (FSHR) or luteinizing hormone and human chorionic gonadotropin receptor (LHCGR) present on endometrium. Within ovaries, FSH induces autophagy and apoptosis of granulosa cells leading to atresia of non-growing follicles, whereas hCG and LH have anti-apoptotic functions. Endometrial cells express functioning gonadotrophin receptors. The objective of this study was to analyze the effect of gonadotrophins on physiology and endometrial cells survival. Collected endometria were incubated for 48 or 72 h with 100 ng/mL of recombinant human FSH (rhFSH), recombinant human LH (rhLH) or highly purified hCG (HPhCG) alone or combined. Controls omitted gonadotrophins. The effect of gonadotrophins on cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1), hypoxia inducible factor 1α (HIF1A), and cell-death-related genes expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry for microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) and apoptotic protease activating factor 1 (APAF-1) was performed. Gonadotrophins are able to modulate the endometrial cells survival. FSH induced autophagy and apoptosis by increasing the relative expression of MAP1LC3B and FAS receptor. In FSH-treated samples, expression of apoptosis marker APAF-1 was detected and co-localized on autophagic cells. hCG and LH does not modulate the expression of cell-death-related genes while the up-regulation of pro-proliferative epiregulin gene was observed. When combined with FSH, hCG and LH prevent autophagy and apoptosis FSH-induced. Different gonadotrophins specifically affect endometrial cells viability differently: FSH promotes autophagy and apoptosis while LH and hCG alone or combined with rhFSH does not.
Gonadotrophins modulate cell death-related genes expression in human endometrium / Sacchi, S.; Sena, P.; Addabbo, C.; Cuttone, E.; La Marca, A.. - In: HORMONE MOLECULAR BIOLOGY AND CLINICAL INVESTIGATION. - ISSN 1868-1883. - 41:2(2020), pp. N/A-N/A. [10.1515/hmbci-2019-0074]
Gonadotrophins modulate cell death-related genes expression in human endometrium
Sacchi S.;Sena P.;La Marca A.
2020
Abstract
Gonadotrophins exert their functions by binding follicle-stimulating hormone receptor (FSHR) or luteinizing hormone and human chorionic gonadotropin receptor (LHCGR) present on endometrium. Within ovaries, FSH induces autophagy and apoptosis of granulosa cells leading to atresia of non-growing follicles, whereas hCG and LH have anti-apoptotic functions. Endometrial cells express functioning gonadotrophin receptors. The objective of this study was to analyze the effect of gonadotrophins on physiology and endometrial cells survival. Collected endometria were incubated for 48 or 72 h with 100 ng/mL of recombinant human FSH (rhFSH), recombinant human LH (rhLH) or highly purified hCG (HPhCG) alone or combined. Controls omitted gonadotrophins. The effect of gonadotrophins on cytochrome P450 family 11 subfamily A polypeptide 1 (CYP11A1), hypoxia inducible factor 1α (HIF1A), and cell-death-related genes expression was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). Immunohistochemistry for microtubule-associated proteins 1A/1B light chain 3B (MAP1LC3B) and apoptotic protease activating factor 1 (APAF-1) was performed. Gonadotrophins are able to modulate the endometrial cells survival. FSH induced autophagy and apoptosis by increasing the relative expression of MAP1LC3B and FAS receptor. In FSH-treated samples, expression of apoptosis marker APAF-1 was detected and co-localized on autophagic cells. hCG and LH does not modulate the expression of cell-death-related genes while the up-regulation of pro-proliferative epiregulin gene was observed. When combined with FSH, hCG and LH prevent autophagy and apoptosis FSH-induced. Different gonadotrophins specifically affect endometrial cells viability differently: FSH promotes autophagy and apoptosis while LH and hCG alone or combined with rhFSH does not.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris