The amphibian Bv8 and the mammalian prokineticin 1 (PROK1) and 2 (PROK2) are new chemokine-like protein ligands acting on two G protein-coupled receptors, prokineticin receptor 1 (PKR1) and 2 (PKR2), participating to the mediation of diverse physiological and pathological processes. Prokineticins (PKs), specifically activating the prokineticin receptors (PKRs) located in several areas of the central and peripheral nervous system associated with pain, play a fundamental role in nociception. In this paper, to improve the understanding of the prokineticin system in the neurobiology of pain, we investigated the role of PKR2 in pain perception using pkr2 gene-deficient mice. We observed that, compared to wildtype, pkr2-null mice were more resistant to nociceptive sensitization to temperatures ranging from 46 to 48 °C, to capsaicin and to protons, highlighting a positive interaction between PKR2 and the non-selective cation channels TRPV1. Moreover, PKR2 knock-out mice showed reduced nociceptive response to cold temperature (4 °C) and to mustard oil-induced inflammatory hyperalgesia, suggesting a functional interaction between PKR2 and transient receptor potential ankyrin 1 ion (TRPA1) channels. This notion was supported by experiments in dorsal root ganglia (DRG) cultures from pkr1 and–pkr2-null mice, demonstrating that the percentage of Bv8-responsive DRG neurons which were also responsive to mustard oil was much higher in PKR1−/− than in PKR2−/− mice. Taken together, these findings suggest a functional interaction between PKR2 and TRP channels in the development of hyperalgesia. Drugs able to directly or indirectly block these targets and/or their interactions may represent potential analgesics.

Abnormal Pain Sensation in Mice Lacking the Prokineticin Receptor PKR2: Interaction of PKR2 with Transient Receptor Potential TRPV1 and TRPA1 / Maftei, D.; Vellani, V.; Artico, M.; Giacomoni, C.; Severini, C.; Lattanzi, R.. - In: NEUROSCIENCE. - ISSN 0306-4522. - 427:(2020), pp. 16-28. [10.1016/j.neuroscience.2019.12.003]

Abnormal Pain Sensation in Mice Lacking the Prokineticin Receptor PKR2: Interaction of PKR2 with Transient Receptor Potential TRPV1 and TRPA1

Vellani V.;Severini C.;
2020

Abstract

The amphibian Bv8 and the mammalian prokineticin 1 (PROK1) and 2 (PROK2) are new chemokine-like protein ligands acting on two G protein-coupled receptors, prokineticin receptor 1 (PKR1) and 2 (PKR2), participating to the mediation of diverse physiological and pathological processes. Prokineticins (PKs), specifically activating the prokineticin receptors (PKRs) located in several areas of the central and peripheral nervous system associated with pain, play a fundamental role in nociception. In this paper, to improve the understanding of the prokineticin system in the neurobiology of pain, we investigated the role of PKR2 in pain perception using pkr2 gene-deficient mice. We observed that, compared to wildtype, pkr2-null mice were more resistant to nociceptive sensitization to temperatures ranging from 46 to 48 °C, to capsaicin and to protons, highlighting a positive interaction between PKR2 and the non-selective cation channels TRPV1. Moreover, PKR2 knock-out mice showed reduced nociceptive response to cold temperature (4 °C) and to mustard oil-induced inflammatory hyperalgesia, suggesting a functional interaction between PKR2 and transient receptor potential ankyrin 1 ion (TRPA1) channels. This notion was supported by experiments in dorsal root ganglia (DRG) cultures from pkr1 and–pkr2-null mice, demonstrating that the percentage of Bv8-responsive DRG neurons which were also responsive to mustard oil was much higher in PKR1−/− than in PKR2−/− mice. Taken together, these findings suggest a functional interaction between PKR2 and TRP channels in the development of hyperalgesia. Drugs able to directly or indirectly block these targets and/or their interactions may represent potential analgesics.
2020
26-dic-2019
427
16
28
Abnormal Pain Sensation in Mice Lacking the Prokineticin Receptor PKR2: Interaction of PKR2 with Transient Receptor Potential TRPV1 and TRPA1 / Maftei, D.; Vellani, V.; Artico, M.; Giacomoni, C.; Severini, C.; Lattanzi, R.. - In: NEUROSCIENCE. - ISSN 0306-4522. - 427:(2020), pp. 16-28. [10.1016/j.neuroscience.2019.12.003]
Maftei, D.; Vellani, V.; Artico, M.; Giacomoni, C.; Severini, C.; Lattanzi, R.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0306452219308449-main.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 2.41 MB
Formato Adobe PDF
2.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1208248
Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact