Because of concerns over the construction industry's heavy use of cement and the general dissatisfaction with the performance of building envelopes with respect to durability, there is a growing demand for a novel class of "green" binders. Geopolymer binders have re-emerged as binders that can be used as a replacement for Portland cement given their numerous advantages over the latter including lower carbon dioxide emissions, greater chemical and thermal resistance, combined with enhanced mechanical properties at both normal and extreme exposure conditions. The paper focuses on the use of geopolymer binders in building applications. It discusses the various options for starting materials and describes key engineering properties associated with geopolymer compositions that are ideal for structural applications. Specific properties, such as compressive strength, density, pore size distribution, cumulative water absorption, and acid resistance, are comparable to the specifications for structures incorporating conventional binders. This paper presents geopolymer binders, with their three dimensional microstructure, as material for structural elements that can be used to advance the realization of sustainable building systems. © 2011 by the authors.
Advancing the use of secondary inputs in geopolymer binders for sustainable cementitious composites: A review / Obonyo, E.; Kamseu, E.; Melo, U. C.; Leonelli, C.. - In: SUSTAINABILITY. - ISSN 2071-1050. - 3:2(2011), pp. 410-423. [10.3390/su3020410]
Advancing the use of secondary inputs in geopolymer binders for sustainable cementitious composites: A review
Kamseu E.
Writing – Original Draft Preparation
;Leonelli C.Conceptualization
2011
Abstract
Because of concerns over the construction industry's heavy use of cement and the general dissatisfaction with the performance of building envelopes with respect to durability, there is a growing demand for a novel class of "green" binders. Geopolymer binders have re-emerged as binders that can be used as a replacement for Portland cement given their numerous advantages over the latter including lower carbon dioxide emissions, greater chemical and thermal resistance, combined with enhanced mechanical properties at both normal and extreme exposure conditions. The paper focuses on the use of geopolymer binders in building applications. It discusses the various options for starting materials and describes key engineering properties associated with geopolymer compositions that are ideal for structural applications. Specific properties, such as compressive strength, density, pore size distribution, cumulative water absorption, and acid resistance, are comparable to the specifications for structures incorporating conventional binders. This paper presents geopolymer binders, with their three dimensional microstructure, as material for structural elements that can be used to advance the realization of sustainable building systems. © 2011 by the authors.File | Dimensione | Formato | |
---|---|---|---|
sustainability 2011 Esther Elie.pdf
Open access
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
409.74 kB
Formato
Adobe PDF
|
409.74 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris