The research employed pigments, Fe2O3 and CeO2, into the glass frit for adjustable mechanical properties and coloration. Disc samples were prepared to determine microstructures and mechanical properties in terms of tribology and nano-indentation hardness as well as biaxial flexural strength. The glass system presented the crystalline phases, by XRD, of phlogopite Ca-mica, fluorapatite, stishovite, anorthite and strontium apatite. Furthermore, SEM micrographs revealed rod-like microstructures and parent glass phase in all specimens 1) GC, 2) GC + 1wt% CeO2, 3) GC + 0.1wt% Fe2O3 and 4) GC + 1wt% CeO2 + 0.1wt% Fe2O3. For the tribology test, specimens were tested by a pin-on-disc tribometer with 10 N load and 1,000 wear cycles. The obtained values of wear rate and friction coefficient of GCF were better than those of others. The nanoindentation hardness results showed that GC exhibited 3.2 GPa which lower than those of GCC, GCF and GCCF, respectively. The addition of pigments affected reddish yellow color. After crystallization, the contrast ratio is around 0.72 for GC and decreases to 58-75% for the mica glass-ceramics that contain the pigments. The values of biaxial flexural strength of all were acceptable (≥100 MPa) according to ISO 6872:2015.
Tribology, mechanical properties and coloration of a mica glass-ceramic / Prasertwong, S.; Angkulpipat, S.; Srichumpong, T.; Suputtamongkol, K.; Thanachayanont, C.; Sola, R.; Heness, G.; Leonelli, C.; Chaysuwan, D.. - In: WARASAN LOHA, WATSADU LAE LAE. - ISSN 0857-6149. - 30:2(2020), pp. 83-90. [10.14456/jmmm.2020.24]
Tribology, mechanical properties and coloration of a mica glass-ceramic
Sola R.Investigation
;Leonelli C.Conceptualization
;
2020
Abstract
The research employed pigments, Fe2O3 and CeO2, into the glass frit for adjustable mechanical properties and coloration. Disc samples were prepared to determine microstructures and mechanical properties in terms of tribology and nano-indentation hardness as well as biaxial flexural strength. The glass system presented the crystalline phases, by XRD, of phlogopite Ca-mica, fluorapatite, stishovite, anorthite and strontium apatite. Furthermore, SEM micrographs revealed rod-like microstructures and parent glass phase in all specimens 1) GC, 2) GC + 1wt% CeO2, 3) GC + 0.1wt% Fe2O3 and 4) GC + 1wt% CeO2 + 0.1wt% Fe2O3. For the tribology test, specimens were tested by a pin-on-disc tribometer with 10 N load and 1,000 wear cycles. The obtained values of wear rate and friction coefficient of GCF were better than those of others. The nanoindentation hardness results showed that GC exhibited 3.2 GPa which lower than those of GCC, GCF and GCCF, respectively. The addition of pigments affected reddish yellow color. After crystallization, the contrast ratio is around 0.72 for GC and decreases to 58-75% for the mica glass-ceramics that contain the pigments. The values of biaxial flexural strength of all were acceptable (≥100 MPa) according to ISO 6872:2015.File | Dimensione | Formato | |
---|---|---|---|
Journal of Metals, Materials and Minerals Vol. 30 No. 2 pp. 83-90 2020.pdf
Accesso riservato
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris