Set membership (SM) H∞ identification is investigated aimed to estimate a low order approximating model and its identification error, without requiring the selection of a-priori basis for the model class. An α-optimal algorithm is determined using time domain data and supposing l∞ bounded measurement errors and exponentially stable systems. The presented algorithm is proven to be strongly convergent.

α-Optimality evaluation in H∞ identification of low-order uncertainty models / Giarrè, L.; Malan, S.; Milanese, M.. - 1:(1997), pp. 175-176. ( Proceedings of the 1997 36th IEEE Conference on Decision and Control. Part 1 (of 5) San Diego, CA, USA, 1997).

α-Optimality evaluation in H∞ identification of low-order uncertainty models

Giarrè L.;
1997

Abstract

Set membership (SM) H∞ identification is investigated aimed to estimate a low order approximating model and its identification error, without requiring the selection of a-priori basis for the model class. An α-optimal algorithm is determined using time domain data and supposing l∞ bounded measurement errors and exponentially stable systems. The presented algorithm is proven to be strongly convergent.
1997
1997
no
Inglese
Proceedings of the 1997 36th IEEE Conference on Decision and Control. Part 1 (of 5)
San Diego, CA, USA,
1997
Proceedings of the IEEE Conference on Decision and Control
1
175
176
IEEE
Piscataway, NJ, United States
Giarrè, L.; Malan, S.; Milanese, M.
Atti di CONVEGNO::Relazione in Atti di Convegno
273
3
α-Optimality evaluation in H∞ identification of low-order uncertainty models / Giarrè, L.; Malan, S.; Milanese, M.. - 1:(1997), pp. 175-176. ( Proceedings of the 1997 36th IEEE Conference on Decision and Control. Part 1 (of 5) San Diego, CA, USA, 1997).
none
info:eu-repo/semantics/conferenceObject
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1207084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact