In this paper we present a model of the dynamics of an interesting class of stochastic cellular automata. Such automata are variants of automata used for density classification and they are chosen because they can be effectively used to address consensus problems. After introducing the topic and the basic notation, we study the dynamics of such automata by means of simulations with varying periods and neighborhood structures. We use the results of simulations to extrapolate a stochastic model of the dynamics of such automata that can be used to estimate stabilization time.

A Stochastic Model of Self-Stabilizing Cellular Automata for Consensus Formation / Monica, Stefania; Bergenti, Federico. - 1260:(2014). (Intervento presentato al convegno 15th Workshop "Dagli Oggetti agli Agenti" From Objects to Agents, WOA 2014 tenutosi a ita nel 25-26 Settembre 2014).

A Stochastic Model of Self-Stabilizing Cellular Automata for Consensus Formation

Stefania Monica;Federico Bergenti
2014

Abstract

In this paper we present a model of the dynamics of an interesting class of stochastic cellular automata. Such automata are variants of automata used for density classification and they are chosen because they can be effectively used to address consensus problems. After introducing the topic and the basic notation, we study the dynamics of such automata by means of simulations with varying periods and neighborhood structures. We use the results of simulations to extrapolate a stochastic model of the dynamics of such automata that can be used to estimate stabilization time.
2014
15th Workshop "Dagli Oggetti agli Agenti" From Objects to Agents, WOA 2014
ita
25-26 Settembre 2014
1260
Monica, Stefania; Bergenti, Federico
A Stochastic Model of Self-Stabilizing Cellular Automata for Consensus Formation / Monica, Stefania; Bergenti, Federico. - 1260:(2014). (Intervento presentato al convegno 15th Workshop "Dagli Oggetti agli Agenti" From Objects to Agents, WOA 2014 tenutosi a ita nel 25-26 Settembre 2014).
File in questo prodotto:
File Dimensione Formato  
paper8.pdf

Accesso riservato

Dimensione 325.1 kB
Formato Adobe PDF
325.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1207065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact