In this paper opinion dynamics in multi-agent systems is investigated analytically using a kinetic approach. Interactions among agents are interpreted as collisions among molecules in gases and opinion dynamics is described according to the Boltzmann equation. Starting from a microscopic description of single interactions, global properties of the opinion distribution are derived analytically. The proposed analytic model is general enough to allow reproducing features of real societies of agents, such as positive and negative influences and bounded confidence, which are typically used to study opinion distribution models. Analytic results relative to emergent and global characteristics of considered multi-agent systems are verified by simulations obtained via direct implementation of the proposed microscopic interactions rules. Simulations confirm analytic results.
Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations / Monica, Stefania; Bergenti, Federico. - In: COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY. - ISSN 1381-298X. - (2017), pp. 1-28. [10.1007/s10588-016-9235-z]
Data di pubblicazione: | 2017 | |
Titolo: | Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations | |
Autore/i: | Monica, Stefania; Bergenti, Federico | |
Autore/i UNIMORE: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10588-016-9235-z | |
Rivista: | ||
Pagina iniziale: | 1 | |
Pagina finale: | 28 | |
Codice identificativo ISI: | WOS:000407366400006 | |
Codice identificativo Scopus: | 2-s2.0-84984874839 | |
Citazione: | Opinion dynamics in multi-agent systems: selected analytic models and verifying simulations / Monica, Stefania; Bergenti, Federico. - In: COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY. - ISSN 1381-298X. - (2017), pp. 1-28. [10.1007/s10588-016-9235-z] | |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
printed.pdf | N/A | Administrator Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris