Maximum likelihood is a criterion often used to derive localization algorithms. In particular, in this paper we focus on a distance-based algorithm for the localization of nodes in static wireless networks. Assuming that Ultra Wide Band (UWB) signals are used for inter-node communications, we investigate the ill-conditioning of the Two-Stage Maximum-Likelihood (TSML) Time of Arrival (ToA) localization algorithm as the Anchor Nodes (ANs) positions change. We analytically derive novel lower and upper bounds for the localization error and we evaluate them in some localization scenarios as functions of the ANs’ positions. We show that particular ANs’ configurations intrinsically lead to ill-conditioning of the localization problem, making the TSML-ToA inapplicable. For comparison purposes, we also show, through some examples, that a Particle Swarm Optimization (PSO)-based algorithm guarantees accurate positioning also when the localization problem embedded in the TSML-ToA algorithm is ill-conditioned.
Maximum likelihood localization: When does it fail? / Monica, Stefania; Ferrari, Gianluigi. - In: ICT EXPRESS. - ISSN 2405-9595. - 2:1(2016), pp. 10-13. [10.1016/j.icte.2016.02.004]
Maximum likelihood localization: When does it fail?
MONICA, Stefania;
2016
Abstract
Maximum likelihood is a criterion often used to derive localization algorithms. In particular, in this paper we focus on a distance-based algorithm for the localization of nodes in static wireless networks. Assuming that Ultra Wide Band (UWB) signals are used for inter-node communications, we investigate the ill-conditioning of the Two-Stage Maximum-Likelihood (TSML) Time of Arrival (ToA) localization algorithm as the Anchor Nodes (ANs) positions change. We analytically derive novel lower and upper bounds for the localization error and we evaluate them in some localization scenarios as functions of the ANs’ positions. We show that particular ANs’ configurations intrinsically lead to ill-conditioning of the localization problem, making the TSML-ToA inapplicable. For comparison purposes, we also show, through some examples, that a Particle Swarm Optimization (PSO)-based algorithm guarantees accurate positioning also when the localization problem embedded in the TSML-ToA algorithm is ill-conditioned.File | Dimensione | Formato | |
---|---|---|---|
MoFe_ICT16.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
624.27 kB
Formato
Adobe PDF
|
624.27 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris