Two uptake mechanisms were identified for PEGylated DNA polyplex biodistribution to the liver. At a low polyplex dose, a rapid-uptake mechanism dominates, resulting in 60% capture by liver in 5 min, due to a saturable receptor-mediated process. Rapid-uptake led to the fast metabolism of polyplexes by liver (t 1/2 =2.1 h), correlating with a 1-μg pGL3 polyplex dose losing full transfection competency after 4 h in the liver. Dose escalation of either polyplex or poly(ethylene glycol) (PEG) peptide led to the saturation of rapid-uptake and revealed a delayed-uptake mechanism for polyplexes by liver. Delayed-uptake was characterized by the slower liver accumulation of 40% of the polyplex dose over 40 min, followed by slow metabolism (t 1/2 =15 h) and an extended time (12 h) for a 1-μg pGL3 polyplex dose, remaining fully transfection competent in the liver. The delayed-uptake mechanism is consistent with polyplexes crossing liver fenestrated endothelial cells to reach steady state in the space of Disse. The results describe how to control polyplex biodistribution to liver to avoid rapid-uptake and metabolism, in favor of delayed-uptake, to preserve polyplex transfection competency in the liver for up to 12 h.
The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression / Khargharia, S.; Baumhover, N. J.; Crowley, S. T.; Duskey, J.; Rice, K. G.. - In: GENE THERAPY. - ISSN 0969-7128. - 21:12(2014), pp. 1021-1028. [10.1038/gt.2014.81]
The uptake mechanism of PEGylated DNA polyplexes by the liver influences gene expression
Duskey J.;
2014
Abstract
Two uptake mechanisms were identified for PEGylated DNA polyplex biodistribution to the liver. At a low polyplex dose, a rapid-uptake mechanism dominates, resulting in 60% capture by liver in 5 min, due to a saturable receptor-mediated process. Rapid-uptake led to the fast metabolism of polyplexes by liver (t 1/2 =2.1 h), correlating with a 1-μg pGL3 polyplex dose losing full transfection competency after 4 h in the liver. Dose escalation of either polyplex or poly(ethylene glycol) (PEG) peptide led to the saturation of rapid-uptake and revealed a delayed-uptake mechanism for polyplexes by liver. Delayed-uptake was characterized by the slower liver accumulation of 40% of the polyplex dose over 40 min, followed by slow metabolism (t 1/2 =15 h) and an extended time (12 h) for a 1-μg pGL3 polyplex dose, remaining fully transfection competent in the liver. The delayed-uptake mechanism is consistent with polyplexes crossing liver fenestrated endothelial cells to reach steady state in the space of Disse. The results describe how to control polyplex biodistribution to liver to avoid rapid-uptake and metabolism, in favor of delayed-uptake, to preserve polyplex transfection competency in the liver for up to 12 h.File | Dimensione | Formato | |
---|---|---|---|
gt201481.pdf
Accesso riservato
Descrizione: Articolo principale
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.44 MB
Formato
Adobe PDF
|
1.44 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris