We study federated machine learning at the wireless network edge, where limited power wireless devices, each with its own dataset, build a joint model with the help of a remote parameter server (PS). We consider a bandwidth-limited fading multiple access channel (MAC) from the wireless devices to the PS, and propose various techniques to implement distributed stochastic gradient descent (DSGD) over this shared noisy wireless channel. We first propose a digital DSGD (D-DSGD) scheme, in which one device is selected opportunistically for transmission at each iteration based on the channel conditions; the scheduled device quantizes its gradient estimate to a finite number of bits imposed by the channel condition, and transmits these bits to the PS in a reliable manner. Next, motivated by the additive nature of the wireless MAC, we propose a novel analog communication scheme, referred to as the compressed analog DSGD (CA-DSGD), where the devices first sparsify their gradient estimates while accumulating error from previous iterations, and project the resultant sparse vector into a low-dimensional vector for bandwidth reduction. We also design a power allocation scheme to align the received gradient vectors at the PS in an efficient manner. Numerical results show that D-DSGD outperforms other digital approaches in the literature; however, in general the proposed CA-DSGD algorithm converges faster than the D-DSGD scheme, and reaches a higher level of accuracy. We have observed that the gap between the analog and digital schemes increases when the datasets of devices are not independent and identically distributed (i.i.d.). Furthermore, the performance of the CA-DSGD scheme is shown to be robust against imperfect channel state information (CSI) at the devices. Overall these results show clear advantages for the proposed analog over-the-air DSGD scheme, which suggests that learning and communication algorithms should be designed jointly to achieve the best end-to-end performance in machine learning applications at the wireless edge.

Federated Learning over Wireless Fading Channels / Amiri, M. M.; Gunduz, D.. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:5(2020), pp. 3546-3557. [10.1109/TWC.2020.2974748]

Federated Learning over Wireless Fading Channels

Gunduz D.
2020

Abstract

We study federated machine learning at the wireless network edge, where limited power wireless devices, each with its own dataset, build a joint model with the help of a remote parameter server (PS). We consider a bandwidth-limited fading multiple access channel (MAC) from the wireless devices to the PS, and propose various techniques to implement distributed stochastic gradient descent (DSGD) over this shared noisy wireless channel. We first propose a digital DSGD (D-DSGD) scheme, in which one device is selected opportunistically for transmission at each iteration based on the channel conditions; the scheduled device quantizes its gradient estimate to a finite number of bits imposed by the channel condition, and transmits these bits to the PS in a reliable manner. Next, motivated by the additive nature of the wireless MAC, we propose a novel analog communication scheme, referred to as the compressed analog DSGD (CA-DSGD), where the devices first sparsify their gradient estimates while accumulating error from previous iterations, and project the resultant sparse vector into a low-dimensional vector for bandwidth reduction. We also design a power allocation scheme to align the received gradient vectors at the PS in an efficient manner. Numerical results show that D-DSGD outperforms other digital approaches in the literature; however, in general the proposed CA-DSGD algorithm converges faster than the D-DSGD scheme, and reaches a higher level of accuracy. We have observed that the gap between the analog and digital schemes increases when the datasets of devices are not independent and identically distributed (i.i.d.). Furthermore, the performance of the CA-DSGD scheme is shown to be robust against imperfect channel state information (CSI) at the devices. Overall these results show clear advantages for the proposed analog over-the-air DSGD scheme, which suggests that learning and communication algorithms should be designed jointly to achieve the best end-to-end performance in machine learning applications at the wireless edge.
2020
19
5
3546
3557
Federated Learning over Wireless Fading Channels / Amiri, M. M.; Gunduz, D.. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:5(2020), pp. 3546-3557. [10.1109/TWC.2020.2974748]
Amiri, M. M.; Gunduz, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1205313
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 345
  • ???jsp.display-item.citation.isi??? 300
social impact