Machine learning algorithms are effective in several applications, but they are not as much successful when applied to intrusion detection in cyber security. Due to the high sensitivity to their training data, cyber detectors based on machine learning are vulnerable to targeted adversarial attacks that involve the perturbation of initial samples. Existing defenses assume unrealistic scenarios; their results are underwhelming in non-adversarial settings; or they can be applied only to machine learning algorithms that perform poorly for cyber security. We present an original methodology for countering adversarial perturbations targeting intrusion detection systems based on random forests. As a practical application, we integrate the proposed defense method in a cyber detector analyzing network traffic. The experimental results on millions of labelled network flows show that the new detector has a twofold value: it outperforms state-of-the-art detectors that are subject to adversarial attacks; it exhibits robust results both in adversarial and non-adversarial scenarios.
Hardening Random Forest Cyber Detectors Against Adversarial Attacks / Apruzzese, G.; Andreolini, M.; Colajanni, M.; Marchetti, M.. - In: IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE. - ISSN 2471-285X. - (2020), pp. 1-13.
Data di pubblicazione: | 2020 |
Titolo: | Hardening Random Forest Cyber Detectors Against Adversarial Attacks |
Autore/i: | Apruzzese, G.; Andreolini, M.; Colajanni, M.; Marchetti, M. |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1109/TETCI.2019.2961157 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 13 |
Codice identificativo Scopus: | 2-s2.0-85085753098 |
Citazione: | Hardening Random Forest Cyber Detectors Against Adversarial Attacks / Apruzzese, G.; Andreolini, M.; Colajanni, M.; Marchetti, M.. - In: IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE. - ISSN 2471-285X. - (2020), pp. 1-13. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
apruzzese_TETCI.pdf | Articolo principale | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris