HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4+ T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin–proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment.

Alterations of redox and iron metabolism accompany the development of HIV latency / Shytaj, I. L.; Lucic, B.; Forcato, M.; Penzo, C.; Billingsley, J.; Laketa, V.; Bosinger, S.; Stanic, M.; Gregoretti, F.; Antonelli, L.; Oliva, G.; Frese, C. K.; Trifunovic, A.; Galy, B.; Eibl, C.; Silvestri, G.; Bicciato, S.; Savarino, A.; Lusic, M.. - In: EMBO JOURNAL. - ISSN 0261-4189. - 39:9(2020), pp. e102209-e102219. [10.15252/embj.2019102209]

Alterations of redox and iron metabolism accompany the development of HIV latency

Forcato M.;Bicciato S.;
2020

Abstract

HIV-1 persists in a latent form during antiretroviral therapy, mainly in CD4+ T cells, thus hampering efforts for a cure. HIV-1 infection is accompanied by metabolic alterations, such as oxidative stress, but the effect of cellular antioxidant responses on viral replication and latency is unknown. Here, we show that cells survive retroviral replication, both in vitro and in vivo in SIVmac-infected macaques, by upregulating antioxidant pathways and the intertwined iron import pathway. These changes are associated with remodeling of promyelocytic leukemia protein nuclear bodies (PML NBs), an important constituent of nuclear architecture and a marker of HIV-1 latency. We found that PML NBs are hyper-SUMOylated and that PML protein is degraded via the ubiquitin–proteasome pathway in productively infected cells, before latency establishment and after reactivation. Conversely, normal numbers of PML NBs were restored upon transition to latency or by decreasing oxidative stress or iron content. Our results highlight antioxidant and iron import pathways as determinants of HIV-1 latency and support their pharmacologic inhibition as tools to regulate PML stability and impair latency establishment.
2020
11-mar-2020
39
9
e102209
e102219
Alterations of redox and iron metabolism accompany the development of HIV latency / Shytaj, I. L.; Lucic, B.; Forcato, M.; Penzo, C.; Billingsley, J.; Laketa, V.; Bosinger, S.; Stanic, M.; Gregoretti, F.; Antonelli, L.; Oliva, G.; Frese, C. K.; Trifunovic, A.; Galy, B.; Eibl, C.; Silvestri, G.; Bicciato, S.; Savarino, A.; Lusic, M.. - In: EMBO JOURNAL. - ISSN 0261-4189. - 39:9(2020), pp. e102209-e102219. [10.15252/embj.2019102209]
Shytaj, I. L.; Lucic, B.; Forcato, M.; Penzo, C.; Billingsley, J.; Laketa, V.; Bosinger, S.; Stanic, M.; Gregoretti, F.; Antonelli, L.; Oliva, G.; Fre...espandi
File in questo prodotto:
File Dimensione Formato  
The EMBO Journal - 2020 - Shytaj - Alterations of redox and iron metabolism accompany the development of HIV latency.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 4.68 MB
Formato Adobe PDF
4.68 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1204537
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 24
social impact