Handwritten Text Recognition (HTR) in free-layout pages is a valuable yet challenging task which aims to automatically understand handwritten texts. State-of-the-art approaches in this field usually encode input images with Convolutional Neural Networks, whose kernels are typically defined on a fixed grid and focus on all input pixels independently. However, this is in contrast with the sparse nature of handwritten pages, in which only pixels representing the ink of the writing are useful for the recognition task. Furthermore, the standard convolution operator is not explicitly designed to take into account the great variability in shape, scale, and orientation of handwritten characters. To overcome these limitations, we investigate the use of deformable convolutions for handwriting recognition. This type of convolution deform the convolution kernel according to the content of the neighborhood, and can therefore be more adaptable to geometric variations and other deformations of the text. Experiments conducted on the IAM and RIMES datasets demonstrate that the use of deformable convolutions is a promising direction for the design of novel architectures for handwritten text recognition.
Watch Your Strokes: Improving Handwritten Text Recognition with Deformable Convolutions / Cojocaru, Iulian; Cascianelli, Silvia; Baraldi, Lorenzo; Corsini, Massimiliano; Cucchiara, Rita. - (2021), pp. 6096-6103. (Intervento presentato al convegno 25th International Conference on Pattern Recognition, ICPR 2020 tenutosi a Milan, Italy nel 10-15 January 2021) [10.1109/ICPR48806.2021.9412392].
Watch Your Strokes: Improving Handwritten Text Recognition with Deformable Convolutions
Iulian Cojocaru;Silvia Cascianelli;Lorenzo Baraldi;Massimiliano Corsini;Rita Cucchiara
2021
Abstract
Handwritten Text Recognition (HTR) in free-layout pages is a valuable yet challenging task which aims to automatically understand handwritten texts. State-of-the-art approaches in this field usually encode input images with Convolutional Neural Networks, whose kernels are typically defined on a fixed grid and focus on all input pixels independently. However, this is in contrast with the sparse nature of handwritten pages, in which only pixels representing the ink of the writing are useful for the recognition task. Furthermore, the standard convolution operator is not explicitly designed to take into account the great variability in shape, scale, and orientation of handwritten characters. To overcome these limitations, we investigate the use of deformable convolutions for handwriting recognition. This type of convolution deform the convolution kernel according to the content of the neighborhood, and can therefore be more adaptable to geometric variations and other deformations of the text. Experiments conducted on the IAM and RIMES datasets demonstrate that the use of deformable convolutions is a promising direction for the design of novel architectures for handwritten text recognition.File | Dimensione | Formato | |
---|---|---|---|
2020_ICPR_HTR_CR.pdf
Open access
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris