Under the action of near-infrared radiation, shape anisotropic gold nanoparticles emit two-photon luminescence and release heat. Accordingly, they have been proposed for imaging, photothermal therapies and thermo-controlled drug delivery. In all these applications particular care must be given to control the nanoparticle - cell interaction and the thermal efficiency of the nanoparticles, while minimizing their intrinsic cytotoxicity. We present here the characterization of the cell interaction of newly developed branched gold nanostars, obtained by laurylsulfobetaine-driven seed-growth synthesis. The study provides information on the size distribution, the shape anisotropy, the cellular uptake and cytotoxicity of the gold nanostars as well as their intracellular dynamic behavior by means of two-photon luminescence imaging, fluorescence correlation spectroscopy and particle tracking. The results show that the gold nanostars are internalized as well as the widely used gold nanorods and are less toxic under prolonged treatments. At the same time they display remarkable two-photon luminescence and large extinction under polarized light in the near-infrared region of the spectrum, 800-950 nm. Gold nanostars appear then a valuable alternative to other elongated or in-homogeneous nanoparticles for cell imaging. © 2012 American Chemical Society.

Gold branched nanoparticles for cellular treatments / Sironi, L.; Freddi, S.; Caccia, M.; Pozzi, P.; Rossetti, L.; Pallavicini, P.; Dona, A.; Cabrini, E.; Gualtieri, M.; Rivolta, I.; Panariti, A.; Dalfonso, L.; Collini, M.; Chirico, G.. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 116:34(2012), pp. 18407-18418. [10.1021/jp305021k]

Gold branched nanoparticles for cellular treatments

Pozzi P.;
2012

Abstract

Under the action of near-infrared radiation, shape anisotropic gold nanoparticles emit two-photon luminescence and release heat. Accordingly, they have been proposed for imaging, photothermal therapies and thermo-controlled drug delivery. In all these applications particular care must be given to control the nanoparticle - cell interaction and the thermal efficiency of the nanoparticles, while minimizing their intrinsic cytotoxicity. We present here the characterization of the cell interaction of newly developed branched gold nanostars, obtained by laurylsulfobetaine-driven seed-growth synthesis. The study provides information on the size distribution, the shape anisotropy, the cellular uptake and cytotoxicity of the gold nanostars as well as their intracellular dynamic behavior by means of two-photon luminescence imaging, fluorescence correlation spectroscopy and particle tracking. The results show that the gold nanostars are internalized as well as the widely used gold nanorods and are less toxic under prolonged treatments. At the same time they display remarkable two-photon luminescence and large extinction under polarized light in the near-infrared region of the spectrum, 800-950 nm. Gold nanostars appear then a valuable alternative to other elongated or in-homogeneous nanoparticles for cell imaging. © 2012 American Chemical Society.
2012
116
34
18407
18418
Gold branched nanoparticles for cellular treatments / Sironi, L.; Freddi, S.; Caccia, M.; Pozzi, P.; Rossetti, L.; Pallavicini, P.; Dona, A.; Cabrini, E.; Gualtieri, M.; Rivolta, I.; Panariti, A.; Dalfonso, L.; Collini, M.; Chirico, G.. - In: JOURNAL OF PHYSICAL CHEMISTRY. C. - ISSN 1932-7447. - 116:34(2012), pp. 18407-18418. [10.1021/jp305021k]
Sironi, L.; Freddi, S.; Caccia, M.; Pozzi, P.; Rossetti, L.; Pallavicini, P.; Dona, A.; Cabrini, E.; Gualtieri, M.; Rivolta, I.; Panariti, A.; Dalfons...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1203722
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 46
social impact