Frequently, the Industry suggests non-trivial problems and new fields of research for the Academy. This is the case of the ball bearing diagnostics in direct-drive motors. Direct-drive motors are brushless motors fully controlled by the drive system. Thanks to an encoder or a resolver mounted on the shaft, they can perform complex motion profiles, such as polynomials or splines, including reverse rotation of the shaft. The main advantage of direct-drive motors is the removal of cams or gearboxes afterwards motor with a consequent strong reduction of economic and maintaining costs. Indeed, their main drawback is the difficulty to make diagnostics on the bearings. Regarding bearing diagnostics, most of the techniques present in literature are based on the search of fault-characteristic frequencies in the vibration spectrum of the motor. These fault frequencies are linearly dependent on the rotational frequency of the shaft if it is supposed constant. However, in direct-drive motors the rotational speed changes continuously and consequently the fault frequencies are meaningless. The paper reports a brief overview of some techniques for the condition monitoring of ball bearings in non-stationary conditions used by the Authors in the case of a packaging machine working under variable speed. The techniques adopted include an improved version of the computed order tracking, the cross-correlation function and three supervised learning approaches: artificial neural networks, artificial immune systems and support vector machines.
Condition Monitoring Techniques of Ball Bearings in Non-stationary Conditions / Strozzi, M.; Rubini, R.; Cocconcelli, M.. - (2020), pp. 565-576. (Intervento presentato al convegno International Conference on Design Tools and Methods in Industrial Engineering, ADM 2019 tenutosi a ita nel 2019) [10.1007/978-3-030-31154-4_48].
Condition Monitoring Techniques of Ball Bearings in Non-stationary Conditions
Strozzi M.
;Rubini R.;Cocconcelli M.
2020
Abstract
Frequently, the Industry suggests non-trivial problems and new fields of research for the Academy. This is the case of the ball bearing diagnostics in direct-drive motors. Direct-drive motors are brushless motors fully controlled by the drive system. Thanks to an encoder or a resolver mounted on the shaft, they can perform complex motion profiles, such as polynomials or splines, including reverse rotation of the shaft. The main advantage of direct-drive motors is the removal of cams or gearboxes afterwards motor with a consequent strong reduction of economic and maintaining costs. Indeed, their main drawback is the difficulty to make diagnostics on the bearings. Regarding bearing diagnostics, most of the techniques present in literature are based on the search of fault-characteristic frequencies in the vibration spectrum of the motor. These fault frequencies are linearly dependent on the rotational frequency of the shaft if it is supposed constant. However, in direct-drive motors the rotational speed changes continuously and consequently the fault frequencies are meaningless. The paper reports a brief overview of some techniques for the condition monitoring of ball bearings in non-stationary conditions used by the Authors in the case of a packaging machine working under variable speed. The techniques adopted include an improved version of the computed order tracking, the cross-correlation function and three supervised learning approaches: artificial neural networks, artificial immune systems and support vector machines.File | Dimensione | Formato | |
---|---|---|---|
Published paper.pdf
Open access
Descrizione: Articolo pubblicato
Tipologia:
Versione pubblicata dall'editore
Dimensione
878.49 kB
Formato
Adobe PDF
|
878.49 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris