Micro-electromechanical systems (MEMS) are a promising research frontier thanks to their multiple physical fields properties. In the field of microcantilever actuators, Radi et al., 2017, proposed an accurate analytical approach for estimating the pull-in characteristics of microcantilever actuators subject to electrostatic actuation. The present work assesses this previous analytical model via experimental tests with the use of a simple millimeter-scale device. The aim of the work is to measure the critical pull-in voltage and the deflection of an actuated cantilever beam for different configurations in order to validate the variation of the pull-in voltage with the geometrical parameters of the device provided by theoretical investigations. Preliminary tests show that the experimental pull-in voltage and deflection are in good agreement with the results provided by the analytical model. Specifically, the relative difference between experimental and analytical values of pull-in voltage is in the range between 0.7% and 10%.
Experimental characterization of pull-in parameters for an electrostatically actuated cantilever / Sorrentino, Andrea; Bianchi, Giovanni; Castagnetti, Davide; Radi, Enrico. - 1:(2019), pp. 69-70. (Intervento presentato al convegno 30th International Conference on Adaptive Structures and Technologies, ICAST 2019 tenutosi a Concordia University, Montreal, QC, Canada nel October 7‐10, 2019).
Experimental characterization of pull-in parameters for an electrostatically actuated cantilever
Andrea Sorrentino;Davide Castagnetti;Enrico Radi
2019
Abstract
Micro-electromechanical systems (MEMS) are a promising research frontier thanks to their multiple physical fields properties. In the field of microcantilever actuators, Radi et al., 2017, proposed an accurate analytical approach for estimating the pull-in characteristics of microcantilever actuators subject to electrostatic actuation. The present work assesses this previous analytical model via experimental tests with the use of a simple millimeter-scale device. The aim of the work is to measure the critical pull-in voltage and the deflection of an actuated cantilever beam for different configurations in order to validate the variation of the pull-in voltage with the geometrical parameters of the device provided by theoretical investigations. Preliminary tests show that the experimental pull-in voltage and deflection are in good agreement with the results provided by the analytical model. Specifically, the relative difference between experimental and analytical values of pull-in voltage is in the range between 0.7% and 10%.File | Dimensione | Formato | |
---|---|---|---|
ICAST2019_abstract_MEMS_#15.docx
Open access
Descrizione: articolo principale
Tipologia:
Abstract
Dimensione
412.48 kB
Formato
Microsoft Word XML
|
412.48 kB | Microsoft Word XML | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris