The contact potential difference (CPD) between carbon contamination (CC) layers and the several substrates on which they were deposited has been measured as a function of the film thickness by means of Kelvin probe force microscopy (KPFM). The observed CPD trends may be divided into three categories: (i) an increase, or decrease, in CPD with thickness up to a saturation value with sign inversion with respect to the substrates (Al and Si); (ii) an oscillation with no sign inversion (substrates, gold and platinum); (iii) an oscillation through sign inversion (palladium substrate). Effects (ii) and (iii) seem to be typical of CC, since they have not been observed for other materials, including evaporated carbon. Several possible causes of the above two effects are examined, but a satisfactory interpretation has not been found yet. The sensitivity of KPFM is such that CC layers 10 nm thick are easily visible, whereas they are hardly detectable by topography.

Work function dependence on the thickness and substrate of carbon contamination layers by Kelvin probe force microscopy / Alessandrini, A.; Valdre, U.. - In: PHILOSOPHICAL MAGAZINE LETTERS. - ISSN 0950-0839. - 83:7(2003), pp. 441-451. [10.1080/0950083031000137857]

Work function dependence on the thickness and substrate of carbon contamination layers by Kelvin probe force microscopy

Alessandrini A.
Membro del Collaboration Group
;
2003

Abstract

The contact potential difference (CPD) between carbon contamination (CC) layers and the several substrates on which they were deposited has been measured as a function of the film thickness by means of Kelvin probe force microscopy (KPFM). The observed CPD trends may be divided into three categories: (i) an increase, or decrease, in CPD with thickness up to a saturation value with sign inversion with respect to the substrates (Al and Si); (ii) an oscillation with no sign inversion (substrates, gold and platinum); (iii) an oscillation through sign inversion (palladium substrate). Effects (ii) and (iii) seem to be typical of CC, since they have not been observed for other materials, including evaporated carbon. Several possible causes of the above two effects are examined, but a satisfactory interpretation has not been found yet. The sensitivity of KPFM is such that CC layers 10 nm thick are easily visible, whereas they are hardly detectable by topography.
2003
83
7
441
451
Work function dependence on the thickness and substrate of carbon contamination layers by Kelvin probe force microscopy / Alessandrini, A.; Valdre, U.. - In: PHILOSOPHICAL MAGAZINE LETTERS. - ISSN 0950-0839. - 83:7(2003), pp. 441-451. [10.1080/0950083031000137857]
Alessandrini, A.; Valdre, U.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1203411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact