Solutions in a given set of an impulsive Dirichlet boundary value problem are investigated for second-order differential inclusions. The method used for obtaining the existence and the localization of a solution is based on the combination of a fixed point index technique developed by ourselves earlier with a bound sets approach and Scorza-Dragoni type result. Since the related bounding (Liapunov-like) functions are strictly localized on the boundaries of parameter sets of candidate solutions, some trajectories are allowed to escape from these sets.

On the impulsive Dirichlet problem for second-order differential inclusions / Pavlačková, Martina; TADDEI, Valentina. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 2020:13(2020), pp. 1-22. [10.14232/ejqtde.2020.1.13]

On the impulsive Dirichlet problem for second-order differential inclusions

Valentina Taddei
2020

Abstract

Solutions in a given set of an impulsive Dirichlet boundary value problem are investigated for second-order differential inclusions. The method used for obtaining the existence and the localization of a solution is based on the combination of a fixed point index technique developed by ourselves earlier with a bound sets approach and Scorza-Dragoni type result. Since the related bounding (Liapunov-like) functions are strictly localized on the boundaries of parameter sets of candidate solutions, some trajectories are allowed to escape from these sets.
2020
13
1
22
On the impulsive Dirichlet problem for second-order differential inclusions / Pavlačková, Martina; TADDEI, Valentina. - In: ELECTRONIC JOURNAL ON THE QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS. - ISSN 1417-3875. - 2020:13(2020), pp. 1-22. [10.14232/ejqtde.2020.1.13]
Pavlačková, Martina; TADDEI, Valentina
File in questo prodotto:
File Dimensione Formato  
Pavlackova-Taddei2.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 499.83 kB
Formato Adobe PDF
499.83 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1203309
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact