A distributed binary hypothesis testing (HT) problem involving two parties, one referred to as the observer and the other as the detector is studied. The observer observes a discrete memoryless source (DMS) and communicates its observations to the detector over a discrete memoryless channel (DMC). The detector observes another DMS correlated with that at the observer, and performs a binary hypothesis test on the joint distribution of the two DMS's using its own observed data and the information received from the observer. The trade-off between the type I error probability and the type II error-exponent of the HT is explored. Single-letter lower bounds on the optimal type II error-exponent are obtained by using two different coding schemes, a separate HT and channel coding scheme and a joint HT and channel coding scheme based on hybrid coding for the matched bandwidth case. Exact single-letter characterization of the same is established for the special case of testing against conditional independence, and it is shown to be achieved by the separate HT and channel coding scheme. An example is provided where the joint scheme achieves a strictly better performance than the separation based scheme.

Distributed Hypothesis Testing over Discrete Memoryless Channels / Sreekumar, S.; Gunduz, D.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 66:4(2020), pp. 2044-2066. [10.1109/TIT.2019.2953750]

Distributed Hypothesis Testing over Discrete Memoryless Channels

D. Gunduz
2020

Abstract

A distributed binary hypothesis testing (HT) problem involving two parties, one referred to as the observer and the other as the detector is studied. The observer observes a discrete memoryless source (DMS) and communicates its observations to the detector over a discrete memoryless channel (DMC). The detector observes another DMS correlated with that at the observer, and performs a binary hypothesis test on the joint distribution of the two DMS's using its own observed data and the information received from the observer. The trade-off between the type I error probability and the type II error-exponent of the HT is explored. Single-letter lower bounds on the optimal type II error-exponent are obtained by using two different coding schemes, a separate HT and channel coding scheme and a joint HT and channel coding scheme based on hybrid coding for the matched bandwidth case. Exact single-letter characterization of the same is established for the special case of testing against conditional independence, and it is shown to be achieved by the separate HT and channel coding scheme. An example is provided where the joint scheme achieves a strictly better performance than the separation based scheme.
2020
66
4
2044
2066
Distributed Hypothesis Testing over Discrete Memoryless Channels / Sreekumar, S.; Gunduz, D.. - In: IEEE TRANSACTIONS ON INFORMATION THEORY. - ISSN 0018-9448. - 66:4(2020), pp. 2044-2066. [10.1109/TIT.2019.2953750]
Sreekumar, S.; Gunduz, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1202576
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 20
social impact