Centralized coded caching and delivery is studied for a radio access combination network (RACN), whereby a set of H edge nodes (ENs), connected to a cloud server via orthogonal fronthaul links with limited capacity, serve a total of K user equipments (UEs) over wireless links. The cloud server is assumed to hold a library of N files, each of size F bits; and each user, equipped with a cache of size μ R N F bits, is connected to a distinct set of r ENs each of which equipped with a cache of size μTNF bits, where μT , μ R in [{0,1}] are the fractional cache capacities of the UEs and the ENs, respectively. The objective is to minimize the normalized delivery time (NDT), which refers to the worst case delivery latency when each user requests a single distinct file from the library. Three coded caching and transmission schemes are considered, namely the MDS-IA, soft-transfer and zero-forcing (ZF) schemes. MDS-IA utilizes maximum distance separable (MDS) codes in the placement phase and real interference alignment (IA) in the delivery phase. The achievable NDT for this scheme is presented for r=2 and arbitrary fractional cache sizes μ T and μ R , and also for arbitrary value of r and fractional cache size μT when the cache capacity of the UE is above a certain threshold. The soft-transfer scheme utilizes soft-transfer of coded symbols to ENs that implement ZF over the edge links. The achievable NDT for this scheme is presented for arbitrary r and arbitrary fractional cache sizes μT and μ R. The last scheme utilizes ZF between the ENs and the UEs without the participation of the cloud server in the delivery phase. The achievable NDT for this scheme is presented for an arbitrary value of r when the total cache size at a pair of UE and EN is sufficient to store the whole library, i.e., μT+μRgeq 1. The results indicate that the fronthaul capacity determines which scheme achieves a better performance in terms of the NDT, and the soft-transfer scheme becomes favorable as the fronthaul capacity increases.

Cache-Aided Combination Networks with Interference / Elkordy, A.; Motahari, A.; Nafie, M.; Gunduz, D.. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:1(2020), pp. 148-161. [10.1109/TWC.2019.2942913]

Cache-Aided Combination Networks with Interference

D. Gunduz
2020

Abstract

Centralized coded caching and delivery is studied for a radio access combination network (RACN), whereby a set of H edge nodes (ENs), connected to a cloud server via orthogonal fronthaul links with limited capacity, serve a total of K user equipments (UEs) over wireless links. The cloud server is assumed to hold a library of N files, each of size F bits; and each user, equipped with a cache of size μ R N F bits, is connected to a distinct set of r ENs each of which equipped with a cache of size μTNF bits, where μT , μ R in [{0,1}] are the fractional cache capacities of the UEs and the ENs, respectively. The objective is to minimize the normalized delivery time (NDT), which refers to the worst case delivery latency when each user requests a single distinct file from the library. Three coded caching and transmission schemes are considered, namely the MDS-IA, soft-transfer and zero-forcing (ZF) schemes. MDS-IA utilizes maximum distance separable (MDS) codes in the placement phase and real interference alignment (IA) in the delivery phase. The achievable NDT for this scheme is presented for r=2 and arbitrary fractional cache sizes μ T and μ R , and also for arbitrary value of r and fractional cache size μT when the cache capacity of the UE is above a certain threshold. The soft-transfer scheme utilizes soft-transfer of coded symbols to ENs that implement ZF over the edge links. The achievable NDT for this scheme is presented for arbitrary r and arbitrary fractional cache sizes μT and μ R. The last scheme utilizes ZF between the ENs and the UEs without the participation of the cloud server in the delivery phase. The achievable NDT for this scheme is presented for an arbitrary value of r when the total cache size at a pair of UE and EN is sufficient to store the whole library, i.e., μT+μRgeq 1. The results indicate that the fronthaul capacity determines which scheme achieves a better performance in terms of the NDT, and the soft-transfer scheme becomes favorable as the fronthaul capacity increases.
2020
19
1
148
161
Cache-Aided Combination Networks with Interference / Elkordy, A.; Motahari, A.; Nafie, M.; Gunduz, D.. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:1(2020), pp. 148-161. [10.1109/TWC.2019.2942913]
Elkordy, A.; Motahari, A.; Nafie, M.; Gunduz, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1202575
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 5
social impact