Smart meters are key elements for the operation of smart grids. By providing near realtime information on the energy consumption of individual users, smart meters increase the efficiency in generation, distribution and storage of energy in a smart grid. The ability of the utility provider to track users' energy consumption inevitably leads to important threats to privacy. In this paper, privacy in a smart metering system is studied from an information theoretic perspective in the presence of energy harvesting and storage units. It is shown that energy harvesting provides increased privacy by diversifying the energy source, while a storage device can be used to increase both the energy efficiency and the privacy of the user. For given input load and energy harvesting rates, it is shown that there exists a trade-off between the information leakage rate, which is used to measure the privacy of the user, and the wasted energy rate, which is a measure of the energy-efficiency. The impact of the energy harvesting rate and the size of the storage device on this trade-off is also studied. © 1983-2012 IEEE.
Increasing smart meter privacy through energy harvesting and storage devices / Tan, O.; Gunduz, D.; Poor, H. V.. - In: IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS. - ISSN 0733-8716. - 31:7(2013), pp. 1331-1341. [10.1109/JSAC.2013.130715]
Increasing smart meter privacy through energy harvesting and storage devices
D. Gunduz;
2013
Abstract
Smart meters are key elements for the operation of smart grids. By providing near realtime information on the energy consumption of individual users, smart meters increase the efficiency in generation, distribution and storage of energy in a smart grid. The ability of the utility provider to track users' energy consumption inevitably leads to important threats to privacy. In this paper, privacy in a smart metering system is studied from an information theoretic perspective in the presence of energy harvesting and storage units. It is shown that energy harvesting provides increased privacy by diversifying the energy source, while a storage device can be used to increase both the energy efficiency and the privacy of the user. For given input load and energy harvesting rates, it is shown that there exists a trade-off between the information leakage rate, which is used to measure the privacy of the user, and the wasted energy rate, which is a measure of the energy-efficiency. The impact of the energy harvesting rate and the size of the storage device on this trade-off is also studied. © 1983-2012 IEEE.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris