The problem about steady-state temperature distribution in a homogeneous isotropic medium containing a pore or an insulating inhomogeneity formed by two coalesced spheres of the same radius, under arbitrarily oriented uniform heat flux, is solved analytically. The limiting case of two touching spheres is analyzed separately. The solution is obtained in the form of converged integrals that can be calculated using Gauss-Laguerre quadrature rule. The temperature on the inhomogeneity’s surface is used to determine components of the resistivity contribution tensor for the insulating inhomogeneity of the mentioned shape. An interesting observation is that the extreme values of these components are achieved when the spheres are already slightly coalesced

Effect of spherical pores coalescence on the overall conductivity of a material / Lanzoni, L.; Radi, E.; Sevostianov, I.. - In: MECHANICS OF MATERIALS. - ISSN 0167-6636. - 148:(2020), pp. 1-25. [10.1016/j.mechmat.2020.103463]

Effect of spherical pores coalescence on the overall conductivity of a material

Lanzoni L.;Radi E.;Sevostianov I.
2020

Abstract

The problem about steady-state temperature distribution in a homogeneous isotropic medium containing a pore or an insulating inhomogeneity formed by two coalesced spheres of the same radius, under arbitrarily oriented uniform heat flux, is solved analytically. The limiting case of two touching spheres is analyzed separately. The solution is obtained in the form of converged integrals that can be calculated using Gauss-Laguerre quadrature rule. The temperature on the inhomogeneity’s surface is used to determine components of the resistivity contribution tensor for the insulating inhomogeneity of the mentioned shape. An interesting observation is that the extreme values of these components are achieved when the spheres are already slightly coalesced
2020
6-giu-2020
148
1
25
Effect of spherical pores coalescence on the overall conductivity of a material / Lanzoni, L.; Radi, E.; Sevostianov, I.. - In: MECHANICS OF MATERIALS. - ISSN 0167-6636. - 148:(2020), pp. 1-25. [10.1016/j.mechmat.2020.103463]
Lanzoni, L.; Radi, E.; Sevostianov, I.
File in questo prodotto:
File Dimensione Formato  
MOM 2020a.pdf

Open access

Descrizione: articolo principale
Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 846.98 kB
Formato Adobe PDF
846.98 kB Adobe PDF Visualizza/Apri
1-s2.0-S0167663619311470-main.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 4.37 MB
Formato Adobe PDF
4.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1202189
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact