Synchronous Reluctance (SyR) machines are a viable alternative to other kinds of electrical machines in many fields. The simple rotor structure allows a high efficiency level with low manufacturing costs and higher safety in high-speed operations. However, one of the main problems of the SyR machines is the torque ripple generated by the interaction of the stator and rotor Magneto-Motive Force harmonics. Many design solutions have been proposed to date, but heavy torque ripple reduction has only been achieved with long optimizations runs or with complex machine structures. This paper presents an easy and effective method to reduce torque ripple through flux barrier shift. Two machines were designed in order to compare the proposed design with a state-of-the-art procedure. The machines designed with flux barrier shift presents similar performances to the optimized machine, with a lower design time and a more general design method.
Reduction of Torque Ripple in Synchronous Reluctance Machines through Flux Barrier Shift / Ferrari, S.; Pellegrino, G.; Davoli, M.; Bianchini, C.. - (2018), pp. 2290-2296. (Intervento presentato al convegno 23rd International Conference on Electrical Machines, ICEM 2018 tenutosi a Ramada Plaza Thraki, grc nel 2018) [10.1109/ICELMACH.2018.8507223].
Reduction of Torque Ripple in Synchronous Reluctance Machines through Flux Barrier Shift
Davoli M.;Bianchini C.
2018
Abstract
Synchronous Reluctance (SyR) machines are a viable alternative to other kinds of electrical machines in many fields. The simple rotor structure allows a high efficiency level with low manufacturing costs and higher safety in high-speed operations. However, one of the main problems of the SyR machines is the torque ripple generated by the interaction of the stator and rotor Magneto-Motive Force harmonics. Many design solutions have been proposed to date, but heavy torque ripple reduction has only been achieved with long optimizations runs or with complex machine structures. This paper presents an easy and effective method to reduce torque ripple through flux barrier shift. Two machines were designed in order to compare the proposed design with a state-of-the-art procedure. The machines designed with flux barrier shift presents similar performances to the optimized machine, with a lower design time and a more general design method.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris