Chromium triiodide, CrI3, is emerging as a promising magnetic two-dimensional semiconductor where spins are ferromagnetically aligned within a single layer. Potential applications in spintronics arise from an antiferromagnetic ordering between adjacent layers that gives rise to spin filtering and a large magnetoresistance in tunnelling devices. This key feature appears only in thin multilayers and it is not inherited from bulk crystals, where instead neighbouring layers share the same ferromagnetic spin orientation. This discrepancy between bulk and thin samples is unexpected, as magnetic ordering between layers arises from exchange interactions that are local in nature and should not depend strongly on thickness. Here we solve this controversy and show through polarization resolved Raman spectroscopy that thin multilayers do not undergo a structural phase transition typical of bulk crystals. As a consequence, a different stacking pattern is present in thin and bulk samples at the temperatures at which magnetism sets in and, according to previous first-principles simulations, this results in a different interlayer magnetic ordering. Our experimental findings provide evidence for the strong interplay between stacking order and magnetism in CrI3, opening interesting perspectives to design the magnetic state of van der Waals multilayers.

Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals / Ubrig, N.; Wang, Z.; Teyssier, J.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F.; Gibertini, M.. - In: 2D MATERIALS. - ISSN 2053-1583. - 7:1(2020), pp. 015007-015013. [10.1088/2053-1583/ab4c64]

Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals

Gibertini M.
2020

Abstract

Chromium triiodide, CrI3, is emerging as a promising magnetic two-dimensional semiconductor where spins are ferromagnetically aligned within a single layer. Potential applications in spintronics arise from an antiferromagnetic ordering between adjacent layers that gives rise to spin filtering and a large magnetoresistance in tunnelling devices. This key feature appears only in thin multilayers and it is not inherited from bulk crystals, where instead neighbouring layers share the same ferromagnetic spin orientation. This discrepancy between bulk and thin samples is unexpected, as magnetic ordering between layers arises from exchange interactions that are local in nature and should not depend strongly on thickness. Here we solve this controversy and show through polarization resolved Raman spectroscopy that thin multilayers do not undergo a structural phase transition typical of bulk crystals. As a consequence, a different stacking pattern is present in thin and bulk samples at the temperatures at which magnetism sets in and, according to previous first-principles simulations, this results in a different interlayer magnetic ordering. Our experimental findings provide evidence for the strong interplay between stacking order and magnetism in CrI3, opening interesting perspectives to design the magnetic state of van der Waals multilayers.
2020
7
1
015007
015013
Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals / Ubrig, N.; Wang, Z.; Teyssier, J.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F.; Gibertini, M.. - In: 2D MATERIALS. - ISSN 2053-1583. - 7:1(2020), pp. 015007-015013. [10.1088/2053-1583/ab4c64]
Ubrig, N.; Wang, Z.; Teyssier, J.; Taniguchi, T.; Watanabe, K.; Giannini, E.; Morpurgo, A. F.; Gibertini, M.
File in questo prodotto:
File Dimensione Formato  
Ubrig_2020_2D_Mater._7_015007.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1200926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 63
social impact