The local application of mechanical stress in piezoelectric materials gives rise to boundaries across which the electric polarization changes. Polarization charges appear along such polar discontinuities and the ensuing electric fields drive a charge reconstruction with the accumulation of free carriers at the boundaries. This is particularly relevant for two-dimensional materials that can sustain very large strains and display record piezoelectric responses. Here we show by first-principles simulations the emergence of one-dimensional wires of free electrons and holes along strain interfaces, taking SnSe as a paradigmatic material. We complement this by developing a Schrödinger-Poisson approach specifically designed for two-dimensional materials that is able to reproduce the ab initio results and also to extend them to regimes of parameters and system sizes that would be unaffordable in first-principles calculations. This model allows us to assess the degree of tunability for the free charge in the wires coming from strain values and profiles, and to obtain the critical size at which the interfaces start to be metallic.

Strain-induced polar discontinuities in two-dimensional materials from combined first-principles and Schrödinger-Poisson simulations / Bussy, A.; Pizzi, G.; Gibertini, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 96:16(2017), pp. 165438-165444. [10.1103/PhysRevB.96.165438]

Strain-induced polar discontinuities in two-dimensional materials from combined first-principles and Schrödinger-Poisson simulations

Gibertini M.
2017-01-01

Abstract

The local application of mechanical stress in piezoelectric materials gives rise to boundaries across which the electric polarization changes. Polarization charges appear along such polar discontinuities and the ensuing electric fields drive a charge reconstruction with the accumulation of free carriers at the boundaries. This is particularly relevant for two-dimensional materials that can sustain very large strains and display record piezoelectric responses. Here we show by first-principles simulations the emergence of one-dimensional wires of free electrons and holes along strain interfaces, taking SnSe as a paradigmatic material. We complement this by developing a Schrödinger-Poisson approach specifically designed for two-dimensional materials that is able to reproduce the ab initio results and also to extend them to regimes of parameters and system sizes that would be unaffordable in first-principles calculations. This model allows us to assess the degree of tunability for the free charge in the wires coming from strain values and profiles, and to obtain the critical size at which the interfaces start to be metallic.
2017
96
16
165438
165444
Strain-induced polar discontinuities in two-dimensional materials from combined first-principles and Schrödinger-Poisson simulations / Bussy, A.; Pizzi, G.; Gibertini, M.. - In: PHYSICAL REVIEW. B. - ISSN 2469-9950. - 96:16(2017), pp. 165438-165444. [10.1103/PhysRevB.96.165438]
Bussy, A.; Pizzi, G.; Gibertini, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1200885
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact