In the last years, Laser Powder Bed Fusion (L-PBF) has become the main technology to produce metal parts by Additive Manufacturing (AM). This manufacturing technique comprises the advantages of additive manufacturing and the high performance offered by metal alloys in order to produce mechanical components ready for the final application. Occasionally, due to the layer-wise process, some defects can be produced inside the parts, leading to mechanical properties that are well above the requirements for static loads but rapidly decay under fatigue conditions. This concern leads the researchers to investigate the actual mechanical properties of parts, as compared to those of traditionally manufactured components, and to optimize the whole process in order to limit defects and increase the reliability of the process. While extensive static tests confirmed high mechanical properties of the main metal alloys produced by AM, the fatigue behavior of additive metal parts still needs to be deeply investigated. In this study, the fatigue and tensile properties of 3 metal alloys were analyzed, in view of 3 final applications, listed as follows. • Automotive field: Aluminum alloy AlSi7Mg was studied for the final production of a topologically optimized frame part of a sports car. In particular, the interest was focused on the effect of: - Heat treatment: no heat treatment vs. T6 vs. the heating cycle required for painting the body-in-white frame; - Surface finish: as-built vs. polished; - Orientation on the building platform. • Medical field: Titanium alloy Ti6Al4V was investigated for the production of femoral stems with improved osseointegration. The study on this material was focused on the effect of: - Powder contamination; - Different parameters/powder sets; - Surface finish: as-built vs. polished; - Orientation on the building platform. • Mold manufacturing field: the Maraging steel alloy X3NiCoMoTi was studied for the application in a mold insert with internal cooling channels. The main concern related to this application led to the study of the effect of: - Holes in the material, acting as stress concentrators; - Surface finish of the holes; - Different parameters/powder sets. This work aims to provide better understanding of the critical variables of the manufacturing process and the post-processing operations. This study was accomplished within the European Project DREAM (Driving Up Reliability of Additive Manufacturing)

Negli ultimi anni, la tecnologia di Laser Powder Bed Fusion (L-PBF) è diventata la principale tecnica utilizzata per produrre componenti in metallo mediante Additive Manufacturing (AM). Questa tecnica beneficia dei vantaggi dell’Additive Manufacturing insieme alle alte prestazioni offerte dalle leghe metalliche, permettendo di produrre componenti meccanici pronti per l’utilizzo finale. Occasionalmente, a causa del processo di costruzione a strati, all’interno delle parti possono essere presenti dei difetti che, senza alterare sensibilmente le proprietà statiche, provocano un rapido degrado delle proprietà a fatica. Questo aspetto ha indirizzato la ricerca verso lo studio delle reali proprietà meccaniche dei componenti prodotti per AM rispetto a quelli prodotti con tecnologie tradizionali e successivamente verso l’ottimizzazione dell’intero processo con l’obiettivo di limitare i difetti e migliorare l’affidabilità del processo. Mentre sono state ampiamente confermate la elevate proprietà meccaniche statiche, il comportamento a fatica deve ancora essere studiato approfonditamente. In questo studio sono state investigate le proprietà a trazione e a fatica di 3 leghe metalliche realizzate mediante L-PBF, considerando l’applicazione finale nei seguenti settori produttivi: • Ambito automotive: è stata considerata la lega AlSi7Mg per la produzione di un componente telaio ottimizzato topologicamente, per l’applicazione su un’automobile ad alte prestazioni. In particolare, sono stati valutati gli effetti di: - Trattamento termico: nessun trattamento vs. T6 vs. trattamento termico per la verniciatura del telaio; - Finitura superficiale: as-built vs. lucidatura; - Orientazione sulla tavola di costruzione. • Ambito biomedicale: per la costruzione di uno stelo femorale con osteointegrazione migliorata è stata scelta la lega di titanio Ti6Al4V. Per la suddetta applicazione ci si è concentrati sull’effetto delle seguenti variabili: - Contaminazione della polvere; - Diversi set di parametri di processo e polvere; - Finitura superficiale: as-built vs. lucidatura; - Orientazione sulla tavola di costruzione. • Settore stampi per stampaggio a iniezione: per la costruzione di un inserto con canali conformati è stata scelta la lega X3NiCoMoTi. In questo caso è stato studiato l’effetto di: - Fori nel materiale, agenti come concentratori di sforzi; - Finitura superficiale dei fori; - Diversi set di parametri di processo e polvere. Questo lavoro ha lo scopo di fornire una migliore conoscenza delle variabili critiche del processo di costruzione additiva e delle operazioni di post-processo. Questo studio è stato realizzato nel contesto del progetto europeo DREAM (Driving Up Reliability of Additive Manufacturing)

Caratterizzazione a fatica delle leghe AlSi7Mg, Ti6Al4V e X3NiCoMoTi prodotte mediante Laser Powder Bed Fusion / Silvio Defanti , 2020 Mar 10. 32. ciclo, Anno Accademico 2018/2019.

Caratterizzazione a fatica delle leghe AlSi7Mg, Ti6Al4V e X3NiCoMoTi prodotte mediante Laser Powder Bed Fusion

DEFANTI, SILVIO
2020

Abstract

In the last years, Laser Powder Bed Fusion (L-PBF) has become the main technology to produce metal parts by Additive Manufacturing (AM). This manufacturing technique comprises the advantages of additive manufacturing and the high performance offered by metal alloys in order to produce mechanical components ready for the final application. Occasionally, due to the layer-wise process, some defects can be produced inside the parts, leading to mechanical properties that are well above the requirements for static loads but rapidly decay under fatigue conditions. This concern leads the researchers to investigate the actual mechanical properties of parts, as compared to those of traditionally manufactured components, and to optimize the whole process in order to limit defects and increase the reliability of the process. While extensive static tests confirmed high mechanical properties of the main metal alloys produced by AM, the fatigue behavior of additive metal parts still needs to be deeply investigated. In this study, the fatigue and tensile properties of 3 metal alloys were analyzed, in view of 3 final applications, listed as follows. • Automotive field: Aluminum alloy AlSi7Mg was studied for the final production of a topologically optimized frame part of a sports car. In particular, the interest was focused on the effect of: - Heat treatment: no heat treatment vs. T6 vs. the heating cycle required for painting the body-in-white frame; - Surface finish: as-built vs. polished; - Orientation on the building platform. • Medical field: Titanium alloy Ti6Al4V was investigated for the production of femoral stems with improved osseointegration. The study on this material was focused on the effect of: - Powder contamination; - Different parameters/powder sets; - Surface finish: as-built vs. polished; - Orientation on the building platform. • Mold manufacturing field: the Maraging steel alloy X3NiCoMoTi was studied for the application in a mold insert with internal cooling channels. The main concern related to this application led to the study of the effect of: - Holes in the material, acting as stress concentrators; - Surface finish of the holes; - Different parameters/powder sets. This work aims to provide better understanding of the critical variables of the manufacturing process and the post-processing operations. This study was accomplished within the European Project DREAM (Driving Up Reliability of Additive Manufacturing)
Fatigue characterization of AlSi7Mg, Ti6Al4V and X3NiCoMoTi alloys produced by Laser Powder Bed Fusion
10-mar-2020
BASSOLI, Elena
SOLA, Antonella
File in questo prodotto:
File Dimensione Formato  
Silvio Defanti PhD Thesis.pdf

Open Access dal 10/03/2023

Descrizione: tesi di dottorato
Dimensione 10.43 MB
Formato Adobe PDF
10.43 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1200756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact