We have previously demonstrated that the ester conjugation of zidovudine (AZT) with ursodeoxycholic acid (UDCA) allows to obtain a prodrug (U-AZT) which eludes the active efflux transporters (AET). This allows the prodrug to more efficiently permeates and remains in murine macrophages than the parent compound. Here we demonstrate that U-AZT can be formulated, by a nanoprecipitation method, as nanoparticle cores coated by bile acid salt (taurocholate or ursodeoxycholate) corona, without any other excipients. The U-AZT nanoparticles appeared spherical with a mean diameter of ∼200 nm and a zeta potential of ∼−55 mV. During the incubation (5 h) in fetal bovine serum, the ursodeoxycholate-coated nanoparticle size did not change. Differently, taurocholate-coated particle size was firstly reduced and then increased up to 800 µm, thus suggesting the high aptitude of these nanoparticles to interact with serum proteins. The in vitro uptake of taurocholate coated particles by murine macrophages was strongly higher than that of ursodeoxycholate-coated particles or free U-AZT (∼500% and ∼7000%, respectively). AZT was also detected in macrophages following the prodrug uptake, with the greatest amounts observed after the taurocholate-coated nanoparticle incubation. As macrophages in the subarachnoid spaces of cerebrospinal fluid (CSF) constitute one of the most unreachable HIV sanctuaries in the body, we also tested the ability of taurocholate-coated nanoparticles (i.e., nanoparticles highly internalized by macrophages) to reach them after their nasal administration in the presence or absence of chitosan. The results indicate that chitosan allowed to obtain a relatively high uptake (up to 4 µg/ml) of U-AZT in CSF. Taking into account that chitosan may promote the direct brain nanoparticle uptake, these findings can be considered an initial step toward the in vivo targeting of the subarachnoid macrophages by U-AZT prodrug.

Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery / Dalpiaz, A.; Fogagnolo, M.; Ferraro, L.; Beggiato, S.; Hanuskova, M.; Maretti, E.; Sacchetti, F.; Leo, E.; Pavan, B.. - In: EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS. - ISSN 0939-6411. - 144:(2019), pp. 91-100. [10.1016/j.ejpb.2019.09.008]

Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery

Dalpiaz A.
Conceptualization
;
Hanuskova M.;Maretti E.;Sacchetti F.;Leo E.
Supervision
;
2019

Abstract

We have previously demonstrated that the ester conjugation of zidovudine (AZT) with ursodeoxycholic acid (UDCA) allows to obtain a prodrug (U-AZT) which eludes the active efflux transporters (AET). This allows the prodrug to more efficiently permeates and remains in murine macrophages than the parent compound. Here we demonstrate that U-AZT can be formulated, by a nanoprecipitation method, as nanoparticle cores coated by bile acid salt (taurocholate or ursodeoxycholate) corona, without any other excipients. The U-AZT nanoparticles appeared spherical with a mean diameter of ∼200 nm and a zeta potential of ∼−55 mV. During the incubation (5 h) in fetal bovine serum, the ursodeoxycholate-coated nanoparticle size did not change. Differently, taurocholate-coated particle size was firstly reduced and then increased up to 800 µm, thus suggesting the high aptitude of these nanoparticles to interact with serum proteins. The in vitro uptake of taurocholate coated particles by murine macrophages was strongly higher than that of ursodeoxycholate-coated particles or free U-AZT (∼500% and ∼7000%, respectively). AZT was also detected in macrophages following the prodrug uptake, with the greatest amounts observed after the taurocholate-coated nanoparticle incubation. As macrophages in the subarachnoid spaces of cerebrospinal fluid (CSF) constitute one of the most unreachable HIV sanctuaries in the body, we also tested the ability of taurocholate-coated nanoparticles (i.e., nanoparticles highly internalized by macrophages) to reach them after their nasal administration in the presence or absence of chitosan. The results indicate that chitosan allowed to obtain a relatively high uptake (up to 4 µg/ml) of U-AZT in CSF. Taking into account that chitosan may promote the direct brain nanoparticle uptake, these findings can be considered an initial step toward the in vivo targeting of the subarachnoid macrophages by U-AZT prodrug.
12-set-2019
144
91
100
Bile salt-coating modulates the macrophage uptake of nanocores constituted by a zidovudine prodrug and enhances its nose-to-brain delivery / Dalpiaz, A.; Fogagnolo, M.; Ferraro, L.; Beggiato, S.; Hanuskova, M.; Maretti, E.; Sacchetti, F.; Leo, E.; Pavan, B.. - In: EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS. - ISSN 0939-6411. - 144:(2019), pp. 91-100. [10.1016/j.ejpb.2019.09.008]
Dalpiaz, A.; Fogagnolo, M.; Ferraro, L.; Beggiato, S.; Hanuskova, M.; Maretti, E.; Sacchetti, F.; Leo, E.; Pavan, B.
File in questo prodotto:
File Dimensione Formato  
manuscript_EJPB_13148_cleaned.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Post-print dell'autore (bozza post referaggio)
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri
dalpiaz2019.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1200691
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 11
social impact