Gasification is one of the most promising technology for an efficient use of biomass fuels. A gate-keeper issue that is holding this technology from being widely used is gas conditioning. All gasifiers architecture suffer in some degree due to tar and particulate content in the gas stream. Depending on the final application, different level of pollutant may preclude a specific use. The cleaning level is more and more relevant moving from IC engines to gas turbine or fuel cells. For this reason this work want to explore an on-line method for tar and particulate detecting using a light scattering system. The proposed solution is based on a dual stage gas dilution combined with the use of a commercial air monitoring device.
Use of light scattering for online detection of tar and particulate matter from biomass gasification / Allesina, G.; Pedrazzi, S.; Rogak, S.; Grace, J. R.; Tartarini, P.. - 2191:(2019), p. 020006. (Intervento presentato al convegno 74th Conference of the Italian Thermal Machines Engineering Association, ATI 2019 tenutosi a Department of Engineering "Enzo Ferrari" of the University of Modena and Reggio Emilia, ita nel 2019) [10.1063/1.5138739].
Use of light scattering for online detection of tar and particulate matter from biomass gasification
Allesina G.
;Pedrazzi S.;Tartarini P.
2019
Abstract
Gasification is one of the most promising technology for an efficient use of biomass fuels. A gate-keeper issue that is holding this technology from being widely used is gas conditioning. All gasifiers architecture suffer in some degree due to tar and particulate content in the gas stream. Depending on the final application, different level of pollutant may preclude a specific use. The cleaning level is more and more relevant moving from IC engines to gas turbine or fuel cells. For this reason this work want to explore an on-line method for tar and particulate detecting using a light scattering system. The proposed solution is based on a dual stage gas dilution combined with the use of a commercial air monitoring device.File | Dimensione | Formato | |
---|---|---|---|
1.5138739.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
937.34 kB
Formato
Adobe PDF
|
937.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris