Gas analysis is the primary method for performance evaluation in gasification systems. Ratio between CO and CO2 as well as the methane content, give valuable information about the quality of the ongoing gasification process. Furthermore, the heating value of the gas is the fundamental parameter for the calculation of cold gas efficiency. The most common way to perform gas analysis consists of using gas chromatography, this method provides high precision but lacks some fundamental points that would make it a perfect match for gasification systems: robustness to tar and soot pollution, capability to operate with wet hot gases above tar dew point and fast responsiveness. This work lays the basis of a different approach for gas analysis. The proposed methodology uses a Junker-Boys calorimeter, the basic calorimetric approach is hybridized with the boundary conditions imposed by gasification, enabling users to define and solve a system of linear equations. This system uses the few data that can be collected from the calorimeter and the gasifier then it calculates the gas composition. An experimental campaign is used to validate the proposed approach. Results showed a good fit between the composition calculated with the calorimetric approach and the one evaluated through standard methods.

Thermodynamic approach to gas analysis in gasification systems / Allesina, G.; Pedrazzi, S.. - In: EXPERIMENTAL THERMAL AND FLUID SCIENCE. - ISSN 0894-1777. - 115:(2020), pp. 110097-110097. [10.1016/j.expthermflusci.2020.110097]

Thermodynamic approach to gas analysis in gasification systems

Allesina G.;Pedrazzi S.
2020

Abstract

Gas analysis is the primary method for performance evaluation in gasification systems. Ratio between CO and CO2 as well as the methane content, give valuable information about the quality of the ongoing gasification process. Furthermore, the heating value of the gas is the fundamental parameter for the calculation of cold gas efficiency. The most common way to perform gas analysis consists of using gas chromatography, this method provides high precision but lacks some fundamental points that would make it a perfect match for gasification systems: robustness to tar and soot pollution, capability to operate with wet hot gases above tar dew point and fast responsiveness. This work lays the basis of a different approach for gas analysis. The proposed methodology uses a Junker-Boys calorimeter, the basic calorimetric approach is hybridized with the boundary conditions imposed by gasification, enabling users to define and solve a system of linear equations. This system uses the few data that can be collected from the calorimeter and the gasifier then it calculates the gas composition. An experimental campaign is used to validate the proposed approach. Results showed a good fit between the composition calculated with the calorimetric approach and the one evaluated through standard methods.
2020
115
110097
110097
Thermodynamic approach to gas analysis in gasification systems / Allesina, G.; Pedrazzi, S.. - In: EXPERIMENTAL THERMAL AND FLUID SCIENCE. - ISSN 0894-1777. - 115:(2020), pp. 110097-110097. [10.1016/j.expthermflusci.2020.110097]
Allesina, G.; Pedrazzi, S.
File in questo prodotto:
File Dimensione Formato  
ETFS - Junker.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.72 MB
Formato Adobe PDF
3.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1200402
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact