The interaction of cytochrome c with cardiolipin (CL) is a critical step in the initial stages of apoptosis and is mediated by a positively charged region on the protein surface comprising several lysine residues (site A). Here, the interaction of wt S. cerevisiae cytochrome c (ycc) and its K72A/K73A, K72A/K79A, K73A/K79A and K72A/K73A/K79A variants with CL was studied through UV–Vis and MCD spectroscopies at pH 7 and molecular dynamics (MD) simulations, to clarify the role of the mutated lysines. Moreover, the influence of the lipid to protein ratio on the interaction mechanism was investigated using low (0.5–10) and high (5–60) CL/ycc molar ratios, obtained with small and gradual or large and abrupt CL additions, respectively. Although all proteins bind to CL, switching from the native low-spin His/Met-ligated form to a low-spin bis-His conformer and to a high-spin species at larger CL concentrations, the two schemes of CL addition show relevant differences in the CL/ycc molar ratios at which the various conformers appear, due to differences in the interaction mechanism. Extended lipid anchorage and peripheral binding appear to prevail at low and high CL/ycc molar ratios, respectively. Simultaneous deletion of two or three surface positive charges from Site A does not abolish CL binding, but instead increases protein affinity for CL. MD calculations suggest this unexpected behavior results from the mutation-induced severe weakening of the H-bond connecting the Nε of His26 with the backbone oxygen of Glu44, which lowers the conformational stability compared to the wt species, overcoming the decreased surface electrostatic interaction.

Binding of S. cerevisiae iso‑1 cytochrome c and its surface lysine‑to‑alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio / Paradisi, Alessandro; Bellei, Marzia; Paltrinieri, Licia; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Ranieri, Antonio; Borsari, Marco; Sola, Marco; Battistuzzi, Gianantonio. - In: JBIC. - ISSN 0949-8257. - 25:3(2020), pp. 467-487. [10.1007/s00775-020-01776-1]

Binding of S. cerevisiae iso‑1 cytochrome c and its surface lysine‑to‑alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio

Marzia Bellei;Licia Paltrinieri;· Carlo Augusto Bortolotti;· Giulia Di Rocco;Antonio Ranieri;· Marco Borsari;Marco Sola;Gianantonio Battistuzzi.
2020

Abstract

The interaction of cytochrome c with cardiolipin (CL) is a critical step in the initial stages of apoptosis and is mediated by a positively charged region on the protein surface comprising several lysine residues (site A). Here, the interaction of wt S. cerevisiae cytochrome c (ycc) and its K72A/K73A, K72A/K79A, K73A/K79A and K72A/K73A/K79A variants with CL was studied through UV–Vis and MCD spectroscopies at pH 7 and molecular dynamics (MD) simulations, to clarify the role of the mutated lysines. Moreover, the influence of the lipid to protein ratio on the interaction mechanism was investigated using low (0.5–10) and high (5–60) CL/ycc molar ratios, obtained with small and gradual or large and abrupt CL additions, respectively. Although all proteins bind to CL, switching from the native low-spin His/Met-ligated form to a low-spin bis-His conformer and to a high-spin species at larger CL concentrations, the two schemes of CL addition show relevant differences in the CL/ycc molar ratios at which the various conformers appear, due to differences in the interaction mechanism. Extended lipid anchorage and peripheral binding appear to prevail at low and high CL/ycc molar ratios, respectively. Simultaneous deletion of two or three surface positive charges from Site A does not abolish CL binding, but instead increases protein affinity for CL. MD calculations suggest this unexpected behavior results from the mutation-induced severe weakening of the H-bond connecting the Nε of His26 with the backbone oxygen of Glu44, which lowers the conformational stability compared to the wt species, overcoming the decreased surface electrostatic interaction.
18-mar-2020
25
3
467
487
Binding of S. cerevisiae iso‑1 cytochrome c and its surface lysine‑to‑alanine variants to cardiolipin: charge effects and the role of the lipid to protein ratio / Paradisi, Alessandro; Bellei, Marzia; Paltrinieri, Licia; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Ranieri, Antonio; Borsari, Marco; Sola, Marco; Battistuzzi, Gianantonio. - In: JBIC. - ISSN 0949-8257. - 25:3(2020), pp. 467-487. [10.1007/s00775-020-01776-1]
Paradisi, Alessandro; Bellei, Marzia; Paltrinieri, Licia; Bortolotti, Carlo Augusto; Di Rocco, Giulia; Ranieri, Antonio; Borsari, Marco; Sola, Marco; Battistuzzi, Gianantonio
File in questo prodotto:
File Dimensione Formato  
ycc+mutKtoA+Cl-2020.pdf

non disponibili

Tipologia: Versione dell'editore (versione pubblicata)
Dimensione 9.21 MB
Formato Adobe PDF
9.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1199317
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact