This paper is about web applications to browse and efficiently visualise large Linked Open Dataset (LOD). The focus is on the customisation of LOD views over semantic datasets also for non expert users. The paper presents the motivation and the details of a visual data format and a chain of tools to easily produce and customize such visualisations. Two proofs of concepts are also presented in order to demonstrate the feasibility and flexibility of our approach.

Customising LOD views: A declarative approach / Graziosi, Alice; Di Iorio, Angelo; Poggi, Francesco; Peroni, Silvio; Bonini, Luca. - (2018), pp. 2185-2192. (Intervento presentato al convegno 33rd Annual ACM Symposium on Applied Computing, SAC 2018 tenutosi a Pau, Francia nel 2018) [10.1145/3167132.3167367].

Customising LOD views: A declarative approach

Poggi, Francesco;
2018

Abstract

This paper is about web applications to browse and efficiently visualise large Linked Open Dataset (LOD). The focus is on the customisation of LOD views over semantic datasets also for non expert users. The paper presents the motivation and the details of a visual data format and a chain of tools to easily produce and customize such visualisations. Two proofs of concepts are also presented in order to demonstrate the feasibility and flexibility of our approach.
2018
33rd Annual ACM Symposium on Applied Computing, SAC 2018
Pau, Francia
2018
2185
2192
Graziosi, Alice; Di Iorio, Angelo; Poggi, Francesco; Peroni, Silvio; Bonini, Luca
Customising LOD views: A declarative approach / Graziosi, Alice; Di Iorio, Angelo; Poggi, Francesco; Peroni, Silvio; Bonini, Luca. - (2018), pp. 2185-2192. (Intervento presentato al convegno 33rd Annual ACM Symposium on Applied Computing, SAC 2018 tenutosi a Pau, Francia nel 2018) [10.1145/3167132.3167367].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1199169
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact