Atmospheric thermodynamic data are gathered by high technology remote instruments such as radiosondes, giving rise to profiles that are usually modelled as functions depending only on height. The radiosonde balloons, however, drift away in the atmosphere resulting in not necessarily vertical but three-dimensional (3D) trajectories. To model this kind of functional data, we introduce a "point based" formulation of an heteroskedastic functional regression model that includes a trivariate smooth function and results to be an extension of a previously introduced unidimensional model. Functional coefficients of both the conditional mean and variance are estimated by reformulating the model as a standard generalized additive model and subsequently as a mixed model. This reformulation leads to a double mixed model whose parameters are fitted by using an iterative algorithm that allows to adjust for heteroskedasticity. The proposed modelling approach is applied to describe collocation mismatch when we deal with couples of balloons launched at two different locations. In particular, we model collocation error of atmospheric pressure in terms of meteorological covariates and space and time mismatch. Results show that model fitting is improved once heteroskedasticity is taken into account.

Modelling collocation uncertainty of 3D atmospheric profiles / Ignaccolo, Rosaria; FRANCO VILLORIA, Maria; Alessandro, Fassò. - In: STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT. - ISSN 1436-3240. - 29:2(2015), pp. 417-429. [10.1007/s00477-014-0890-7]

Modelling collocation uncertainty of 3D atmospheric profiles

FRANCO VILLORIA, Maria;
2015

Abstract

Atmospheric thermodynamic data are gathered by high technology remote instruments such as radiosondes, giving rise to profiles that are usually modelled as functions depending only on height. The radiosonde balloons, however, drift away in the atmosphere resulting in not necessarily vertical but three-dimensional (3D) trajectories. To model this kind of functional data, we introduce a "point based" formulation of an heteroskedastic functional regression model that includes a trivariate smooth function and results to be an extension of a previously introduced unidimensional model. Functional coefficients of both the conditional mean and variance are estimated by reformulating the model as a standard generalized additive model and subsequently as a mixed model. This reformulation leads to a double mixed model whose parameters are fitted by using an iterative algorithm that allows to adjust for heteroskedasticity. The proposed modelling approach is applied to describe collocation mismatch when we deal with couples of balloons launched at two different locations. In particular, we model collocation error of atmospheric pressure in terms of meteorological covariates and space and time mismatch. Results show that model fitting is improved once heteroskedasticity is taken into account.
2015
15-mag-2015
29
2
417
429
Modelling collocation uncertainty of 3D atmospheric profiles / Ignaccolo, Rosaria; FRANCO VILLORIA, Maria; Alessandro, Fassò. - In: STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT. - ISSN 1436-3240. - 29:2(2015), pp. 417-429. [10.1007/s00477-014-0890-7]
Ignaccolo, Rosaria; FRANCO VILLORIA, Maria; Alessandro, Fassò
File in questo prodotto:
File Dimensione Formato  
2015 IgnaccoloFrancoVilloriaFassò SERRA_finale.pdf

Accesso riservato

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.4 MB
Formato Adobe PDF
2.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1198032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact