Basel II imposes regulatory capital on banks related to the default risk of their credit portfolio. Banks using an internal rating approach compute the regulatory capital from pooled probabilities of default. These pooled probabilities can be calculated by clustering credit borrowers into different buckets and computing the mean PD for each bucket. The clustering problem can become very complex when Basel II regulations and real-world constraints are taken into account. Search heuristics have already proven remarkable performance in tackling this problem. A Threshold Accepting algorithm is proposed, which exploits the inherent discrete nature of the clustering problem. This algorithm is found to outperform alternative methodologies already proposed in the literature, such as standard k-means and Differential Evolution. Besides considering several clustering objectives for a given number of buckets, we extend the analysis further by introducing new methods to determine the optimal number of buckets in which to cluster banks’ clients.
Lyra, M., J., J. Paha, S., Paterlini e P., Winker. "Optimization Heuristics for Determining Internal Rating Grading Scales" Working paper, CEFIN WORKING PAPERS, Dipartimento di Economia Marco Biagi - Università di Modena e Reggio Emilia, 2009. https://doi.org/10.25431/11380_1197328
Optimization Heuristics for Determining Internal Rating Grading Scales
Paterlini, S.;
2009
Abstract
Basel II imposes regulatory capital on banks related to the default risk of their credit portfolio. Banks using an internal rating approach compute the regulatory capital from pooled probabilities of default. These pooled probabilities can be calculated by clustering credit borrowers into different buckets and computing the mean PD for each bucket. The clustering problem can become very complex when Basel II regulations and real-world constraints are taken into account. Search heuristics have already proven remarkable performance in tackling this problem. A Threshold Accepting algorithm is proposed, which exploits the inherent discrete nature of the clustering problem. This algorithm is found to outperform alternative methodologies already proposed in the literature, such as standard k-means and Differential Evolution. Besides considering several clustering objectives for a given number of buckets, we extend the analysis further by introducing new methods to determine the optimal number of buckets in which to cluster banks’ clients.File | Dimensione | Formato | |
---|---|---|---|
CEFIN-WP15.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
220.52 kB
Formato
Adobe PDF
|
220.52 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris