We consider ε-perturbed nonlinear Schrödinger equations of the form -ε2Δu+V(x)u=Q(x)f(u)inR2,where V and Q behave like (1 + | x|) -α with α∈ (0 , 2) and (1 + | x|) -β with β∈ (α, + ∞) , respectively. When f has subcritical exponential growth—by means of a weighted Trudinger–Moser-type inequality and the mountain pass theorem in weighted Sobolev spaces—we prove the existence of nontrivial mountain pass solutions, for any ε> 0 , and in the semi-classical limit, these solutions concentrate at a global minimum point of A= V/ Q. Our existence result holds also when f has critical growth, for any ε> 0.

Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials / do O, J. M.; Gloss, E.; Sani, F.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 198:6(2019), pp. 2093-2122. [10.1007/s10231-019-00856-7]

Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials

Sani F.
2019

Abstract

We consider ε-perturbed nonlinear Schrödinger equations of the form -ε2Δu+V(x)u=Q(x)f(u)inR2,where V and Q behave like (1 + | x|) -α with α∈ (0 , 2) and (1 + | x|) -β with β∈ (α, + ∞) , respectively. When f has subcritical exponential growth—by means of a weighted Trudinger–Moser-type inequality and the mountain pass theorem in weighted Sobolev spaces—we prove the existence of nontrivial mountain pass solutions, for any ε> 0 , and in the semi-classical limit, these solutions concentrate at a global minimum point of A= V/ Q. Our existence result holds also when f has critical growth, for any ε> 0.
2019
198
6
2093
2122
Spike solutions for nonlinear Schrödinger equations in 2D with vanishing potentials / do O, J. M.; Gloss, E.; Sani, F.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 198:6(2019), pp. 2093-2122. [10.1007/s10231-019-00856-7]
do O, J. M.; Gloss, E.; Sani, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1194564
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact