Electrochemical stability windows of electrolytes largely determine the limitations of operating regimes of lithium-ion batteries, but the degradation mechanisms are difficult to characterize and poorly understood. Using computational quantum chemistry to investigate the oxidative decomposition that govern voltage stability of multi-component organic electrolytes, we find that electrolyte decomposition is a process involving the solvent and the salt anion and requires explicit treatment of their coupling. We find that the ionization potential of the solvent-anion system is often lower than that of the isolated solvent or the anion. This mutual weakening effect is explained by the formation of the anion-solvent charge-transfer complex, which we study for 16 anion-solvent combinations. This understanding of the oxidation mechanism allows the formulation of a simple predictive model that explains experimentally observed trends in the onset voltages of degradation of electrolytes near the cathode. This model opens opportunities for rapid rational design of stable electrolytes for high-energy batteries.

Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes / Fadel, E. R.; Faglioni, F.; Samsonidze, G.; Molinari, N.; Merinov, B. V.; Goddard III, W. A.; Grossman, J. C.; Mailoa, J. P.; Kozinsky, B.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 10:1(2019), pp. 3360-3360. [10.1038/s41467-019-11317-3]

Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes

Faglioni F.;
2019

Abstract

Electrochemical stability windows of electrolytes largely determine the limitations of operating regimes of lithium-ion batteries, but the degradation mechanisms are difficult to characterize and poorly understood. Using computational quantum chemistry to investigate the oxidative decomposition that govern voltage stability of multi-component organic electrolytes, we find that electrolyte decomposition is a process involving the solvent and the salt anion and requires explicit treatment of their coupling. We find that the ionization potential of the solvent-anion system is often lower than that of the isolated solvent or the anion. This mutual weakening effect is explained by the formation of the anion-solvent charge-transfer complex, which we study for 16 anion-solvent combinations. This understanding of the oxidation mechanism allows the formulation of a simple predictive model that explains experimentally observed trends in the onset voltages of degradation of electrolytes near the cathode. This model opens opportunities for rapid rational design of stable electrolytes for high-energy batteries.
2019
10
1
3360
3360
Role of solvent-anion charge transfer in oxidative degradation of battery electrolytes / Fadel, E. R.; Faglioni, F.; Samsonidze, G.; Molinari, N.; Merinov, B. V.; Goddard III, W. A.; Grossman, J. C.; Mailoa, J. P.; Kozinsky, B.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - 10:1(2019), pp. 3360-3360. [10.1038/s41467-019-11317-3]
Fadel, E. R.; Faglioni, F.; Samsonidze, G.; Molinari, N.; Merinov, B. V.; Goddard III, W. A.; Grossman, J. C.; Mailoa, J. P.; Kozinsky, B.
File in questo prodotto:
File Dimensione Formato  
manuscript.pdf

Open access

Descrizione: manoscritto
Tipologia: Versione originale dell'autore proposta per la pubblicazione
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri
VOR_Role of solvent-anion charge transfer.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.22 MB
Formato Adobe PDF
1.22 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1194562
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 46
  • ???jsp.display-item.citation.isi??? 47
social impact