We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale. © 2013 Springer Science+Business Media New York.

Langevin Dynamics with a Tilted Periodic Potential / Carinci, G.; Luckhaus, S.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 151:5(2013), pp. 870-895. [10.1007/s10955-013-0721-0]

Langevin Dynamics with a Tilted Periodic Potential

Carinci G.;
2013

Abstract

We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale. © 2013 Springer Science+Business Media New York.
2013
151
5
870
895
Langevin Dynamics with a Tilted Periodic Potential / Carinci, G.; Luckhaus, S.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 151:5(2013), pp. 870-895. [10.1007/s10955-013-0721-0]
Carinci, G.; Luckhaus, S.
File in questo prodotto:
File Dimensione Formato  
Carinci-Luckhaus2013_Article_LangevinDynamicsWithATiltedPer.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 938.46 kB
Formato Adobe PDF
938.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1193886
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact