We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale. © 2013 Springer Science+Business Media New York.
Langevin Dynamics with a Tilted Periodic Potential / Carinci, G.; Luckhaus, S.. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - 151:5(2013), pp. 870-895. [10.1007/s10955-013-0721-0]
Langevin Dynamics with a Tilted Periodic Potential
Carinci G.;
2013
Abstract
We study a Langevin equation for a particle moving in a periodic potential in the presence of viscosity γ and subject to a further external field α. For a suitable choice of the parameters α and γ the related deterministic dynamics yields heteroclinic orbits. In such a regime, in absence of stochastic noise both confined and unbounded orbits coexist. We prove that, with the inclusion of an arbitrarly small noise only the confined orbits survive in a sub-exponential time scale. © 2013 Springer Science+Business Media New York.File | Dimensione | Formato | |
---|---|---|---|
Carinci-Luckhaus2013_Article_LangevinDynamicsWithATiltedPer.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
938.46 kB
Formato
Adobe PDF
|
938.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris