The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage. Exosomes, obtained by the use of a commercial kit, prior to the injection in animal knee joints, were characterized for the presence of typical markers and HGF, TGFβ, and IDO. Then, analyses were performed by histology, immunohistochemistry, and behavioral scoring up to 3 weeks after the treatment. Exosome-treated defects showed enhanced pain tolerance level and improved histological scores than the AFSC-treated defects. Indeed by 3 weeks, TGFβ-rich exosome samples induced an almost complete restoration of cartilage with good surface regularity and with the characteristic of hyaline cartilage. Moreover, cells positive for resolving macrophage marker were more easily detectable into exosome-treated joints. Therefore, a modulating role for exosomes on macrophage polarization is conceivable, as demonstrated also by experiments performed on THP1 macrophages. In conclusion, this study demonstrates for the first time the efficacy of human AFSC exosomes in counteract cartilage damage, showing a positive correlation with their TGFβ content.

Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis / Zavatti, M.; Beretti, F.; Casciaro, F.; Bertucci, E.; Maraldi, T.. - In: BIOFACTORS. - ISSN 0951-6433. - 46:1(2020), pp. 106-117. [10.1002/biof.1576]

Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis

Zavatti M.;Beretti F.;Bertucci E.;Maraldi T.
2020

Abstract

The cartilage tissue engineering associated with stem cell-related therapies is becoming very interesting since adult articular cartilage has limited intrinsic capacity for regeneration upon injury. Amniotic fluid stem cells (AFSC) have been shown to produce exosomes with growth factors and immunomodulating molecules that could stop tissue degradation and induce cartilage repair. Based on this state of the art, the main aim of this study was to explore the efficacy of the secreted exosomes, compared to their AFSC source, in MIA-induced animal model of osteoarthritis mimicking a chronic and degenerative process, where inflammation is also involved and lead to irreversible joint damage. Exosomes, obtained by the use of a commercial kit, prior to the injection in animal knee joints, were characterized for the presence of typical markers and HGF, TGFβ, and IDO. Then, analyses were performed by histology, immunohistochemistry, and behavioral scoring up to 3 weeks after the treatment. Exosome-treated defects showed enhanced pain tolerance level and improved histological scores than the AFSC-treated defects. Indeed by 3 weeks, TGFβ-rich exosome samples induced an almost complete restoration of cartilage with good surface regularity and with the characteristic of hyaline cartilage. Moreover, cells positive for resolving macrophage marker were more easily detectable into exosome-treated joints. Therefore, a modulating role for exosomes on macrophage polarization is conceivable, as demonstrated also by experiments performed on THP1 macrophages. In conclusion, this study demonstrates for the first time the efficacy of human AFSC exosomes in counteract cartilage damage, showing a positive correlation with their TGFβ content.
2020
18-ott-2019
46
1
106
117
Comparison of the therapeutic effect of amniotic fluid stem cells and their exosomes on monoiodoacetate-induced animal model of osteoarthritis / Zavatti, M.; Beretti, F.; Casciaro, F.; Bertucci, E.; Maraldi, T.. - In: BIOFACTORS. - ISSN 0951-6433. - 46:1(2020), pp. 106-117. [10.1002/biof.1576]
Zavatti, M.; Beretti, F.; Casciaro, F.; Bertucci, E.; Maraldi, T.
File in questo prodotto:
File Dimensione Formato  
VOR_Comparison of the therapeutic effect of amniotic fluid.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 3.11 MB
Formato Adobe PDF
3.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
biof1576_CorrectionsPDF.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1190336
Citazioni
  • ???jsp.display-item.citation.pmc??? 56
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 82
social impact