In this work, reference data obtained by means of Direct Numerical Simulations of fully-developed flow and heat transfer around a vertical rod bundle are presented. Finite-Volume computations are performed by an original discretization technique based on the representation of arbitrarily-shaped cylindrical boundaries on a non-uniform Cartesian grid. A periodic domain consisting of four subchannels of a triangular lattice of rods with a pitch-to-diameter ratio P/D=1.4 is considered as the reference geometry. A Prandtl number Pr = 0.031 is chosen to represent Liquid Lead-Bismuth Eutectic (LBE) as the working fluid. A single friction Reynolds number value is simulated, namely Reτ=550. Both forced and mixed convection regimes are investigated, buoyancy effects being introduced by imposing a Rayleigh number Ra = 5×105, corresponding to a Richardson number Ri = 0.22. Instantaneous snapshots and relevant statistics of the velocity and thermal fields are reported and discussed for the considered cases, focusing on the effect of aiding buoyancy on turbulent flow and heat transfer. Integral results are also compared against available literature data.
Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D=1.4 / Angeli, D.; Fregni, A.; Stalio, E.. - In: NUCLEAR ENGINEERING AND DESIGN. - ISSN 0029-5493. - 355:(2019), pp. 1-11. [10.1016/j.nucengdes.2019.110320]
Direct numerical simulation of turbulent forced and mixed convection of LBE in a bundle of heated rods with P/D=1.4
Angeli D.;Fregni A.;Stalio E.
2019
Abstract
In this work, reference data obtained by means of Direct Numerical Simulations of fully-developed flow and heat transfer around a vertical rod bundle are presented. Finite-Volume computations are performed by an original discretization technique based on the representation of arbitrarily-shaped cylindrical boundaries on a non-uniform Cartesian grid. A periodic domain consisting of four subchannels of a triangular lattice of rods with a pitch-to-diameter ratio P/D=1.4 is considered as the reference geometry. A Prandtl number Pr = 0.031 is chosen to represent Liquid Lead-Bismuth Eutectic (LBE) as the working fluid. A single friction Reynolds number value is simulated, namely Reτ=550. Both forced and mixed convection regimes are investigated, buoyancy effects being introduced by imposing a Rayleigh number Ra = 5×105, corresponding to a Richardson number Ri = 0.22. Instantaneous snapshots and relevant statistics of the velocity and thermal fields are reported and discussed for the considered cases, focusing on the effect of aiding buoyancy on turbulent flow and heat transfer. Integral results are also compared against available literature data.File | Dimensione | Formato | |
---|---|---|---|
NED2019a_preprint.pdf
Accesso riservato
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
4.67 MB
Formato
Adobe PDF
|
4.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris