In this paper we study heat kernels associated with a Carnot group G, endowed with a family of collapsing left-invariant Riemannian metrics σε which converge in the Gromov- Hausdorff sense to a sub-Riemannian structure on G as ε→ 0. The main new contribution are Gaussian-type bounds on the heat kernel for the σε metrics which are stable as ε→0 and extend the previous time-independent estimates in [16]. As an application we study well posedness of the total variation flow of graph surfaces over a bounded domain in a step two Carnot group (G; σε ). We establish interior and boundary gradient estimates, and develop a Schauder theory which are stable as ε → 0. As a consequence we obtain long time existence of smooth solutions of the sub-Riemannian flow (ε = 0), which in turn yield sub-Riemannian minimal surfaces as t → ∞.
Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups / Capogna, Luca; Citti, Giovanna; Manfredini, Maria. - In: ANALYSIS AND GEOMETRY IN METRIC SPACES. - ISSN 2299-3274. - 1(2013), pp. 255-275.
Data di pubblicazione: | 2013 |
Titolo: | Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups |
Autore/i: | Capogna, Luca; Citti, Giovanna; Manfredini, Maria |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.2478/agms-2013-0006 |
Rivista: | |
Volume: | 1 |
Pagina iniziale: | 255 |
Pagina finale: | 275 |
Codice identificativo Scopus: | 2-s2.0-85017296853 |
Citazione: | Uniform Gaussian Bounds for Subelliptic Heat Kernels and an Application to the Total Variation Flow of Graphs over Carnot Groups / Capogna, Luca; Citti, Giovanna; Manfredini, Maria. - In: ANALYSIS AND GEOMETRY IN METRIC SPACES. - ISSN 2299-3274. - 1(2013), pp. 255-275. |
Tipologia | Articolo su rivista |
File in questo prodotto:

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris