We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.

Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients / Lanconelli, Alberto; Pascucci, Andrea; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 20:4(2020), pp. 1399-1417. [10.1007/s00028-020-00560-7]

Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients

Polidoro, Sergio
Membro del Collaboration Group
2020

Abstract

We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.
2020
31-gen-2020
20
4
1399
1417
Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients / Lanconelli, Alberto; Pascucci, Andrea; Polidoro, Sergio. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 20:4(2020), pp. 1399-1417. [10.1007/s00028-020-00560-7]
Lanconelli, Alberto; Pascucci, Andrea; Polidoro, Sergio
File in questo prodotto:
File Dimensione Formato  
LPP13.pdf

Open access

Descrizione: Articolo
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 427.78 kB
Formato Adobe PDF
427.78 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1188840
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact