Since Tversky's (1977) seminal investigation, the triangle inequality, along with symmetry and minimality, have had a central role in investigations of the fundamental constraints on human similarity judgments. The meaning of minimality and symmetry in similarity judgments has been straightforward, but this is not the case for the triangle inequality. Expressed in terms of dissimilarities, and assuming a simple, linear function between dissimilarities and distances, the triangle inequality constraint implies that human behaviour should be consistent with Dissimilarity (A,B) + Dissimilarity (B,C) ≥ Dissimilarity (A,C), where A, B, and C are any three stimuli. We show how we can translate this constraint into one for similarities, using Shepard's (1987) generalization law, and so derive the multiplicative triangle inequality for similarities, Sim(A,C)≥Sim(A,B)⋅Sim(B,C) where 0≤Sim(x,y)≤1. Can humans violate the multiplicative triangle inequality? An empirical demonstration shows that they can.
The triangle inequality constraint in similarity judgments / Yearsley, J. M.; Barque-Duran, A.; Scerrati, E.; Hampton, J. A.; Pothos, E. M.. - In: PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY. - ISSN 0079-6107. - 130:Pt A(2017), pp. 26-32. [10.1016/j.pbiomolbio.2017.03.005]
The triangle inequality constraint in similarity judgments
Scerrati E.;
2017
Abstract
Since Tversky's (1977) seminal investigation, the triangle inequality, along with symmetry and minimality, have had a central role in investigations of the fundamental constraints on human similarity judgments. The meaning of minimality and symmetry in similarity judgments has been straightforward, but this is not the case for the triangle inequality. Expressed in terms of dissimilarities, and assuming a simple, linear function between dissimilarities and distances, the triangle inequality constraint implies that human behaviour should be consistent with Dissimilarity (A,B) + Dissimilarity (B,C) ≥ Dissimilarity (A,C), where A, B, and C are any three stimuli. We show how we can translate this constraint into one for similarities, using Shepard's (1987) generalization law, and so derive the multiplicative triangle inequality for similarities, Sim(A,C)≥Sim(A,B)⋅Sim(B,C) where 0≤Sim(x,y)≤1. Can humans violate the multiplicative triangle inequality? An empirical demonstration shows that they can.File | Dimensione | Formato | |
---|---|---|---|
Yearsley_etal_2017.docx
Accesso riservato
Tipologia:
AO - Versione originale dell'autore proposta per la pubblicazione
Dimensione
147.5 kB
Formato
Microsoft Word XML
|
147.5 kB | Microsoft Word XML | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris