We study self-duality for interacting particle systems, where the particles move as continuous time random walkers having either exclusion interaction or inclusion interaction. We show that orthogonal self-dualities arise from unitary symmetries of the Markov generator. For these symmetries we provide two equivalent expressions that are related by the Baker-Campbell-Hausdorff formula. The first expression is the exponential of an anti Hermitian operator and thus is unitary by inspection; the second expression is factorized into three terms and is proved to be unitary by using generating functions. The factorized form is also obtained by using an independent approach based on scalar products, which is a new method of independent interest that we introduce to derive (bi)orthogonal duality functions from non-orthogonal duality functions.
Orthogonal duality of Markov processes and unitary symmetries / Carinci, Gioia; Franceschini, Chiara; Giardina', Cristian; Groenevelt, Wolter Godfried Mattijs; Redig, Frank. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - (2019), pp. 1-27.
Data di pubblicazione: | 2019 |
Titolo: | Orthogonal duality of Markov processes and unitary symmetries |
Autore/i: | Carinci, Gioia; Franceschini, Chiara; Giardina', Cristian; Groenevelt, Wolter Godfried Mattijs; Redig, Frank |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.3842/SIGMA.2019.053 |
Rivista: | |
Pagina iniziale: | 1 |
Pagina finale: | 27 |
Codice identificativo ISI: | WOS:000477680200001 |
Codice identificativo Scopus: | 2-s2.0-85074408380 |
Citazione: | Orthogonal duality of Markov processes and unitary symmetries / Carinci, Gioia; Franceschini, Chiara; Giardina', Cristian; Groenevelt, Wolter Godfried Mattijs; Redig, Frank. - In: SYMMETRY, INTEGRABILITY AND GEOMETRY: METHODS AND APPLICATIONS. - ISSN 1815-0659. - (2019), pp. 1-27. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
1812.08553.pdf | Pre-print dell'autore (bozza pre referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris