In this paper, we consider the nonlinear one-dimensional timedependent Schr¨odinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schroedinger equation of the tight-binding model.
Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations / Sacchetti, Andrea. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 21:2(2020), pp. 627-648. [10.1007/s00023-019-00872-6]
Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations
Andrea Sacchetti
2020
Abstract
In this paper, we consider the nonlinear one-dimensional timedependent Schr¨odinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schroedinger equation of the tight-binding model.File | Dimensione | Formato | |
---|---|---|---|
VOR_Derivation of the Tight-Binding.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
438.28 kB
Formato
Adobe PDF
|
438.28 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris