In this paper, we consider the nonlinear one-dimensional timedependent Schr¨odinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schroedinger equation of the tight-binding model.

Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations / Sacchetti, Andrea. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 21:2(2020), pp. 627-648. [10.1007/s00023-019-00872-6]

Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations

Andrea Sacchetti
2020

Abstract

In this paper, we consider the nonlinear one-dimensional timedependent Schr¨odinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schroedinger equation of the tight-binding model.
2020
5-dic-2019
21
2
627
648
Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrödinger Equations / Sacchetti, Andrea. - In: ANNALES HENRI POINCARE'. - ISSN 1424-0637. - 21:2(2020), pp. 627-648. [10.1007/s00023-019-00872-6]
Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
VOR_Derivation of the Tight-Binding.pdf

Accesso riservato

Tipologia: Versione pubblicata dall'editore
Dimensione 438.28 kB
Formato Adobe PDF
438.28 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1188497
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact