The Probabilistic Orienteering Problem (POP) is a variant of the orienteering problem where customers are available with a certain probability. In a previous work, we approximated its objective function value by using a Monte Carlo Sampling method. A heuristic speed-up criterion is considered in the objective function evaluator. In this work we study systematically the impact of the heuristic speed-up criterion in terms of precision and speed on the Monte Carlo evaluator, as well as the performance of a POP solver we propose, based on the embedding of the Monte Carlo evaluator into a Random Restart Local Search metaheuristic algorithm.

A metaheuristic algorithm for the probabilistic orienteering problem / Chou, X.; Gambardella, L. M.; Montemanni, R.. - (2019), pp. 30-34. (Intervento presentato al convegno 2nd International Conference on Machine Learning and Machine Intelligence, MLMI 2019 tenutosi a Shenzhen nel 2019) [10.1145/3366750.3366761].

A metaheuristic algorithm for the probabilistic orienteering problem

Montemanni R.
2019

Abstract

The Probabilistic Orienteering Problem (POP) is a variant of the orienteering problem where customers are available with a certain probability. In a previous work, we approximated its objective function value by using a Monte Carlo Sampling method. A heuristic speed-up criterion is considered in the objective function evaluator. In this work we study systematically the impact of the heuristic speed-up criterion in terms of precision and speed on the Monte Carlo evaluator, as well as the performance of a POP solver we propose, based on the embedding of the Monte Carlo evaluator into a Random Restart Local Search metaheuristic algorithm.
2019
2nd International Conference on Machine Learning and Machine Intelligence, MLMI 2019
Shenzhen
2019
30
34
Chou, X.; Gambardella, L. M.; Montemanni, R.
A metaheuristic algorithm for the probabilistic orienteering problem / Chou, X.; Gambardella, L. M.; Montemanni, R.. - (2019), pp. 30-34. (Intervento presentato al convegno 2nd International Conference on Machine Learning and Machine Intelligence, MLMI 2019 tenutosi a Shenzhen nel 2019) [10.1145/3366750.3366761].
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1188032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact