In this work, we investigate the ability of mesoporous bioactive glasses (MBGs) modified with cerium ions (Ce3+/Ce4+) to act as catalase and superoxide dismutase (SOD) mimetic materials. We have previously reported that the catalytic properties of bioactive Ce-containing glasses based on 45S5 Bioglass® and synthesized via melting are influenced by: i) composition (presence/absence of P2O5); ii) Ce3+/Ce4+ molar ratio. The introduction of cerium species drastically decreased the bioactivity in terms of Hydroxyapatite formation during bioactivity tests in vitro. We thus decided to add cerium to MBGs, a class of glasses with improved bioactivity with respect to classical molten glasses. MBGs exhibit a high surface area and their reactivity is increased with respect to the molten glasses; they are able to induce the formation of Hydroxyapatite over the surface within shorter times with respect to the 45S5. The catalase and SOD mimetic activity tests revealed that the Ce-MGBs are able to act as mimetic materials for the two enzymes. Both Infrared Spectroscopy and X-ray diffraction analysis have confirmed the presence of Hydroxyapatite over both 80SiO2–15CaO–5P2O5, and 80SiO2–20CaO MBGs samples modified by 5.3% mol of CeO2; simultaneously the glasses maintain a good catalase activity. Moreover, the 80SiO2–15CaO–5P2O5 potential bioactive glasses showed SOD mimetic activity. These results highlight that it is possible to obtain a glass with both antioxidant and bioactivity properties.

Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity / Nicolini, V.; Malavasi, G.; Lusvardi, G.; Zambon, A.; Benedetti, F.; Cerrato, G.; Valeri, S.; Luches, P.. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - 45:16(2019), pp. 20910-20920. [10.1016/j.ceramint.2019.07.080]

Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity

Nicolini V.;Malavasi G.
;
Lusvardi G.;Zambon A.;Benedetti F.;Valeri S.;Luches P.
2019

Abstract

In this work, we investigate the ability of mesoporous bioactive glasses (MBGs) modified with cerium ions (Ce3+/Ce4+) to act as catalase and superoxide dismutase (SOD) mimetic materials. We have previously reported that the catalytic properties of bioactive Ce-containing glasses based on 45S5 Bioglass® and synthesized via melting are influenced by: i) composition (presence/absence of P2O5); ii) Ce3+/Ce4+ molar ratio. The introduction of cerium species drastically decreased the bioactivity in terms of Hydroxyapatite formation during bioactivity tests in vitro. We thus decided to add cerium to MBGs, a class of glasses with improved bioactivity with respect to classical molten glasses. MBGs exhibit a high surface area and their reactivity is increased with respect to the molten glasses; they are able to induce the formation of Hydroxyapatite over the surface within shorter times with respect to the 45S5. The catalase and SOD mimetic activity tests revealed that the Ce-MGBs are able to act as mimetic materials for the two enzymes. Both Infrared Spectroscopy and X-ray diffraction analysis have confirmed the presence of Hydroxyapatite over both 80SiO2–15CaO–5P2O5, and 80SiO2–20CaO MBGs samples modified by 5.3% mol of CeO2; simultaneously the glasses maintain a good catalase activity. Moreover, the 80SiO2–15CaO–5P2O5 potential bioactive glasses showed SOD mimetic activity. These results highlight that it is possible to obtain a glass with both antioxidant and bioactivity properties.
45
16
20910
20920
Mesoporous bioactive glasses doped with cerium: Investigation over enzymatic-like mimetic activities and bioactivity / Nicolini, V.; Malavasi, G.; Lusvardi, G.; Zambon, A.; Benedetti, F.; Cerrato, G.; Valeri, S.; Luches, P.. - In: CERAMICS INTERNATIONAL. - ISSN 0272-8842. - 45:16(2019), pp. 20910-20920. [10.1016/j.ceramint.2019.07.080]
Nicolini, V.; Malavasi, G.; Lusvardi, G.; Zambon, A.; Benedetti, F.; Cerrato, G.; Valeri, S.; Luches, P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Caricamento pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11380/1187791
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact