Polythiophenes are the most widely utilized semiconducting polymers in organic electronics, but they are scarcely exploited in photonics due to their high photo-induced absorption caused by interchain polaron pairs, which prevents the establishment of a window of net optical gain. Here we study the photophysics of poly(3-hexylthiophene) configured with different degrees of supramolecular ordering, spin-coated thin films and templated nanowires, and find marked differences in their optical properties. Transient absorption measurements evidence a partially-polarized stimulated emission band in the nanowire samples, in contrast with the photo-induced absorption band observed in spin-coated thin films. In combination with theoretical modeling, our experimental results reveal the origin of the primary photoexcitations dominating the dynamics for different supramolecular ordering, with singlet excitons in the nanostructured samples superseding the presence of polaron pairs, which are present in the disordered films. Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observation of optical gain opens the possibility to the use of polythiophene nanostructures as building blocks of organic optical amplifiers and active photonic devices.

Tailoring optical properties and stimulated emission in nanostructured polythiophene / Portone, A.; Ganzer, L.; Branchi, F.; Ramos, R.; Caldas, M. J.; Pisignano, D.; Molinari, E.; Cerullo, G.; Persano, L.; Prezzi, D.; Virgili, T.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. 7370-1-7370-10. [10.1038/s41598-019-43719-0]

Tailoring optical properties and stimulated emission in nanostructured polythiophene

Molinari E.;Prezzi D.;
2019

Abstract

Polythiophenes are the most widely utilized semiconducting polymers in organic electronics, but they are scarcely exploited in photonics due to their high photo-induced absorption caused by interchain polaron pairs, which prevents the establishment of a window of net optical gain. Here we study the photophysics of poly(3-hexylthiophene) configured with different degrees of supramolecular ordering, spin-coated thin films and templated nanowires, and find marked differences in their optical properties. Transient absorption measurements evidence a partially-polarized stimulated emission band in the nanowire samples, in contrast with the photo-induced absorption band observed in spin-coated thin films. In combination with theoretical modeling, our experimental results reveal the origin of the primary photoexcitations dominating the dynamics for different supramolecular ordering, with singlet excitons in the nanostructured samples superseding the presence of polaron pairs, which are present in the disordered films. Our approach demonstrates a viable strategy to direct optical properties through structural control, and the observation of optical gain opens the possibility to the use of polythiophene nanostructures as building blocks of organic optical amplifiers and active photonic devices.
2019
9
1
7370-1
7370-10
Tailoring optical properties and stimulated emission in nanostructured polythiophene / Portone, A.; Ganzer, L.; Branchi, F.; Ramos, R.; Caldas, M. J.; Pisignano, D.; Molinari, E.; Cerullo, G.; Persano, L.; Prezzi, D.; Virgili, T.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. 7370-1-7370-10. [10.1038/s41598-019-43719-0]
Portone, A.; Ganzer, L.; Branchi, F.; Ramos, R.; Caldas, M. J.; Pisignano, D.; Molinari, E.; Cerullo, G.; Persano, L.; Prezzi, D.; Virgili, T....espandi
File in questo prodotto:
File Dimensione Formato  
Tailoring Scientific reports.pdf

Open access

Descrizione: Articolo principale
Tipologia: Versione pubblicata dall'editore
Dimensione 2.38 MB
Formato Adobe PDF
2.38 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1187269
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact