In this study, stable hybrid materials (Mt-Fe(III)Phen), made by the μ-oxo Fe(III)-phenanthroline complex [(OH 2 ) 3 (Phen)FeOFe(Phen)(OH 2 ) 3 ] 4+ (Fe(III)Phen) intercalated in different amounts into montmorillonite (Mt), were used as a trap for immobilizing gaseous benzene and naphthalene and their mono chloro-derivatives at 25 and 50 °C. The entrapping process was studied through elemental analysis, magic angle spinning NMR spectroscopy, thermal analysis, and evolved gas mass spectrometry. Naphthalene and 1-chloronaphthalene were found to be immobilized in large amount at both temperatures. Molecular modeling allowed designing of the structure of the interlayer in the presence of the immobilized aromatic molecules. Adsorption is affected by the amount of the Fe complex hosted in the interlayer of the entrapping hybrid materials. On the contrary, under the same conditions, benzene and chlorobenzene were not adsorbed. Thermal desorption of naphthalenes was obtained under mild conditions, and immobilization was found to be reversible at least for 20 adsorption/desorption cycles.
Trapping at the Solid-Gas Interface: Selective Adsorption of Naphthalene by Montmorillonite Intercalated with a Fe(III)-Phenanthroline Complex / Castellini, E.; Malferrari, D.; Bernini, F.; Sainz Diaz, C. I.; Mucci, A.; Sola, M.; Brigatti, M. F.; Borsari, M.. - In: ACS OMEGA. - ISSN 2470-1343. - 4:4(2019), pp. 7785-7794. [10.1021/acsomega.9b00335]
Trapping at the Solid-Gas Interface: Selective Adsorption of Naphthalene by Montmorillonite Intercalated with a Fe(III)-Phenanthroline Complex
Castellini E.
;Malferrari D.;Bernini F.;Sainz Diaz C. I.;Mucci A.;Sola M.;Brigatti M. F.;Borsari M.
2019
Abstract
In this study, stable hybrid materials (Mt-Fe(III)Phen), made by the μ-oxo Fe(III)-phenanthroline complex [(OH 2 ) 3 (Phen)FeOFe(Phen)(OH 2 ) 3 ] 4+ (Fe(III)Phen) intercalated in different amounts into montmorillonite (Mt), were used as a trap for immobilizing gaseous benzene and naphthalene and their mono chloro-derivatives at 25 and 50 °C. The entrapping process was studied through elemental analysis, magic angle spinning NMR spectroscopy, thermal analysis, and evolved gas mass spectrometry. Naphthalene and 1-chloronaphthalene were found to be immobilized in large amount at both temperatures. Molecular modeling allowed designing of the structure of the interlayer in the presence of the immobilized aromatic molecules. Adsorption is affected by the amount of the Fe complex hosted in the interlayer of the entrapping hybrid materials. On the contrary, under the same conditions, benzene and chlorobenzene were not adsorbed. Thermal desorption of naphthalenes was obtained under mild conditions, and immobilization was found to be reversible at least for 20 adsorption/desorption cycles.File | Dimensione | Formato | |
---|---|---|---|
Trapping at the Solid−Gas Interface - Selective Adsorption of.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
3.07 MB
Formato
Adobe PDF
|
3.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris